簡易檢索 / 詳目顯示

研究生: 周安德
Oktora, Andre Puja
論文名稱: 以衝擊槌實驗對平板的垂直勁度進行數值之研究
Numerical Investigation of Impulse-Hammer Experiment for Slab Vertical Stiffness
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 92
中文關鍵詞: 垂直勁度振動衝擊錘法
外文關鍵詞: vertical stiffness, slab, waffle floor, vibration, impulse-hammer method
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高科技產業的迅速發展,微型電子元件的生產過程需要特定的環境,如嚴謹的垂直振動、溫度、濕度控制,良好的空氣循環,等。 若不能滿足這些要求, 將可能導致生產瑕疵與極其昂貴的生產損失。因此, 高科技的工廠必須仔細地設計以符合要求。
    從結構工程的角度來看,平板的垂直勁度是一被視為克服微振動問題之重大的組成部分。美國材料試驗學會(ASTM)推出了標準編號 C1740名為「Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse-Response Method」。這個標準提供了程序使用脈衝響應法來迅速地評估混凝土磚、路面、橋面、牆壁或其他板塊狀結構。然而, 該方法用於調查的現有結構。如果結構工程師能夠利用模擬測試來預測模型結構是否滿足垂直勁度的要求,這將會更好。因此, 本研究的目的是使用數值方法來考察對平板的垂直勁度之衝擊槌實驗。
    本研究順利的以衝擊槌實驗對平板的垂直勁度進行了數值研究。取mobility中低頻部分斜率之倒數即為平板之垂直徑度。分析結果指出平板的垂直徑度會隨著Rayleigh阻尼、樓板厚度和次梁間距不同而改變。

    Along with rapid development in hi-tech industries, the production process of micro-electronic components requires specific environment such as strict with vertical vibration, temperature and humidity control, good air circulation, etc. Failure to meet these requirements may result in production failures and extremely costly loss of production. Therefore, the hi-tech factory must be designed carefully to meet the requirements.
    From structural engineering point of view, the slab vertical stiffness is one of major important part to be considered to overcome micro vibration problem. American Society Testing of Materials (ASTM) introduced a Standard number C1740 titled “Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse-Response Method”. This standard provides the procedure for using the impulse-response-method to evaluate rapidly the condition of concrete slabs, pavements, bridge decks, walls, or other plate like structures. However, this method is used for investigation on the existing structure. It will be better if the structural engineer can simulate the test to their structure model to predict whether it meets vertical stiffness requirement. Therefore, the purpose of this study is to investigate the impulse-hammer experiment for slab vertical stiffness by using numerical approach.
    This study successfully performed numerical investigation of impulse-hammer experiment for slab vertical stiffness. The vertical stiffness can be obtained from mobility plot by taking the inverse of the slope in the low frequency. The analysis results indicate that the slab vertical stiffness are functions of Rayleigh damping, slab thickness, secondary beam spacing, and element support conditions.

    Acknowledgement i Abstract ii 摘要 iii Table of Contents iv List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1. Introduction 1 1.2. Literature Review 2 1.2.1. The Vibration Standard for High-Tech Plant 2 1.2.2. Structure Design Perspective 4 1.2.3. Dynamic Characteristics of Buildings Measurement 6 1.3. Objective 7 1.4. Scope of Work 7 1.5. Brief Account of Research 8 Chapter 2 Theory Illustration 10 2.1. Direct Integration Time-History Analysis 10 2.1.1. Loading 11 2.1.2. Time Steps 11 2.1.3. Time Integration Parameters 12 2.1.4. Rayleigh Damping 12 2.2. Newmark Method 13 2.3. Dynamic Stiffness 15 2.4. Fast Fourier Transform 16 Chapter 3 Experimental Measurement 20 3.1. Impulse Response Method 20 3.1.1. Introduction 20 3.1.2. Terminology 20 3.1.3. Significance and Use 23 3.1.4. Apparatus 25 3.1.5. Summary of Practice 27 3.1.6. Output 27 3.2. Experimental Noise Measurement 28 3.2.1. Introduction 28 3.2.2. Apparatus Introduction and Specification 30 3.2.3. Summary of Practice 36 3.2.4. Introduction to the Measurement Program (New DAQ) 37 3.2.5. Output 40 Chapter 4 Structure Modeling and Data Analysis 41 4.1. Structure Modeling 41 4.1.1. Introduction 41 4.1.2. Typical of Taiwan Semiconductor Structure 42 4.1.3. Structure Modeling and Analysis in SAP2000 44 4.1.4. Dynamic Analysis Validation 53 4.1.5. Output of Impact Loading Time-History 57 4.2. Data Analysis 58 4.2.1. Introduction 58 4.2.2. Import/Export Data 61 4.2.3. Interpolation 61 4.2.4. Noise consideration 65 4.2.5. Fast Fourier Transform 65 4.2.6. Results and Discussion 68 Chapter 5 Analysis of Waffle Slab in MicroSAP 80 5.1. Introduction 80 5.2. Finite element model in MicroSAP 81 5.3. Result and Discussion 84 Chapter 6 Conclusion and Future Work 89 6.1. Conclusion 89 6.2. Future Work 89 References 90 Profile 92

    1. ASTM, Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse-Response Method. 2010.
    2. Gordon, C.G. and T.L. Dresner. Methods of developing vibration and acoustic noise specifications for microelectronics process tools. 1994: SPIE.
    3. Gordon, C.G. Generic criteria for vibration-sensitive equipment. 1992: SPIE.
    4. Ungar, E.E., D.H. Sturz, and H. Amick, Vibration Control Design of High Technology Facilities. Sound and Vibration, 1990: p. 20-27.
    5. Amick, H., On Generic Vibration Criteria for Advanced Technology Facilities. Journal of the Institute of Environmental Sciences, Sept./Oct. 1997. XL(5): p. 35-44.
    6. Amick, H. and M. Gendreau. Construction Vibrations and Their Impact on Vibration-Sensitive Facilities. 2000: ASCE.
    7. Hanagan, L.M., Walking-Induced Floor Vibration Case Studies. Journal of Architectural Engineering, 2005. 11(1): p. 14-18.
    8. Pan, T.-C., X. You, and C.L. Lim, Evaluation of Floor Vibration in a Biotechnology Laboratory Caused by Human Walking. Journal of Performance of Constructed Facilities, 2008. 22(3): p. 122-130.
    9. Amick, H., et al. Design of stiff, low-vibration floor structures. 1992: SPIE.
    10. Amick, H. and A. Bayat. Dynamics of Stiff Floors for Advanced Technology Facilities. in Proceedings of 12th ASCE Engineering Mechanics Conference. May 17-20, 1998. La Jolla, CA.
    11. Amick, H., M. Gendreau, and A. Bayat. Dynamic characteristics of structures extracted from in-situ testing. 1999: SPIE.
    12. Howard, C.Q. and C.H. Hansen, Vibration analysis of waffle floors. Computers & Structures, 2003. 81(1): p. 15-26.
    13. Amick, H. Meeting The Vibration Challenges of Next-Generation Photolithography Tools. in Annual Technical Meeting. 2001. Phoenix, Arizona: IEST.
    14. Allen, D.E. and J.H. Rainer, Vibration criteria for long-span floors. Canadian Journal of Civil Engineering, 1976. 3(2): p. 165-173.
    15. Ellingwood, B. and A. Tallin, Structural Serviceability: Floor Vibrations. Journal of Structural Engineering, 1984. 110(2): p. 401-418.
    16. Murray, T.M., D.E. Allen, and E.E. Ungar, Floor Vibrations Due to Human Activity. 1997: Chicago, Ill. : American Institute of Steel Construction. 69.
    17. Allen, D.E. and G. Pernica, Control of Floor Vibration. Construction Technology Update, 1998. 22.
    18. Amick, H. and M. Stead, Vibration Sensitivity of Laboratory Bench Microscpe. Sound and Vibration, 2007: p. 10-16.
    19. Brownjohn, J.M.W. and C.J. Middleton, Procedures for vibration serviceability assessment of high-frequency floors. Engineering Structures, 2008. 30(6): p. 1548-1559.
    20. Middleton, C.J. and J.M.W. Brownjohn, Response of high frequency floors: A literature review. Engineering Structures, 2010. 32(2): p. 337-352.
    21. Gordon, C.G. The Design of Low-Vibration Buildings for Microelectronics and Other Occupancies. in SPIE Proceedings of the First International Conference on Vibration Control in Optics and Metrology. 1987.
    22. Ju, S.H. and M.C. Lin, Comparison of Building Analyses Assuming Rigid or Flexible Floors. Journal of Structural Engineering, 1999. 125(1): p. 25-31.
    23. Reynolds, P. and A. Pavic, Impulse hammer versus shaker excitation for the modal testing of building floors. Experimental Techniques, 2000: p. 39-44.
    24. Howard, C.Q., An inexpensive DIY impact hammer for vibration analysis of buildings. 2005.
    25. Lee, S.-L., T.-C. Chen, and J.-S. Lee, The Identification Approach of Static Stiffness in Composite Slab by Using Impulse Hammer. Chung Hua Journal of Science and Engineering, 2009. 7(1): p. 35-44.
    26. Clough, R.W. and J. Penzien., Dynamics of Structure. 3 ed. 2003: Computers & Structures, Inc.
    27. Davis, A.G., M.K. Lim, and C.G. Petersen, Rapid and economical evaluation of concrete tunnel linings with impulse response and impulse radar non-destructive methods. NDT & E International, 2005. 38(3): p. 181-186.
    28. Davis, A.G. and C.S. Dunn. From theory to field experience with the nondestructive vibration testing of piles. in Proc Inst Civil Engnrs. 1974.
    29. Davis, A.G., The non-destructive impulse response test in North America: 1985–2001. NDT&E International 2003. 36(Elsevier Science): p. 185-193.
    30. Hwang, J.-S., et al., A seismic retrofit method by connecting viscous dampers for microelectronics factories. Earthquake Engineering & Structural Dynamics, 2007. 36: p. 1461-1480.
    31. Oktora, A.P. and N. Suryani, Comparative Behavior Study of Steel Structures. Case study: 10 storeys of Special Moment Resisting Frame and Eccentrically Braced Frame, in Civil Engineering. 2009, Bandung Institute of Technology: Bandung.
    32. Ju, S.H., Determination of Slab Vertical Stiffness by Static Analysis.

    下載圖示 校內:立即公開
    校外:2013-08-04公開
    QR CODE