簡易檢索 / 詳目顯示

研究生: 陳政邑
Chen, Jheng-Yi
論文名稱: 完全空乏型絕緣層上矽金氧半場效電晶體的多重臨界電壓設計與靜態隨機存取記憶體應用
Analysis of the Multi-Vt FD-SOI MOSFETs and SRAM Application
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 53
中文關鍵詞: 完全空乏型絕緣層上矽金氧半電晶體6T-靜態隨機存取記憶體體極偏壓
外文關鍵詞: FD SOI, 6T-SRAM, body biasing
相關次數: 點閱:112下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體的演進,CMOS元件不斷微縮以求得更好的效能,但這些奈米尺度的元件卻面臨許多物理極限,多數與短通道效應有關,如:汲極引發位能障下降(DIBL)、熱載子效應等。目前主流解決方法是將元件設計成三維結構,如鰭式電晶體(FinFET)或閘極全環繞式電晶體(Gate All Around FET),來獲得更佳的閘極控制能力。然而,傳統二維平面結構的完全空乏型絕緣層上矽金氧半場效電晶體(FD-SOI MOSFET)亦是克服短通效應的一個極佳選擇,其在使用未摻雜材料當通道的情況,依舊擁有著優秀的通道控制能力,且比起鰭式電晶體,完全空乏型絕緣層上矽金氧半場效電晶體,有著更簡單的製程技術,以及藉由調整體極電壓或基板摻雜濃度改變門檻電壓的特性。
    論文中我們將利用TCAD軟體模擬出的五奈米節點完全空乏型絕緣層上矽金氧半場效電晶體與其特性,在不改變製程技術及元件結構的情況下,將6T-靜態隨機存取記憶體設計為三種不同的組態,比較其讀取的靜態雜訊邊際以及寫入電流。此外,我們也利用EXCEL巨集模擬出靜態隨機存取記憶體在製程上可容忍的誤差,並推算出最小操作電壓。最後,藉由適當的改變體極偏壓,對三種模式下的靜態隨機存取記憶體分別進行優化。此種利用改變體極偏壓優化最小操作電壓的技術可在不使製成變複雜的情況下,令元件的設計更加具有彈性及潛力。

    As CMOS technology industry continues to scale, especially at sub 22 nm node, many physical limitations mostly related to short channel effect (SCE), such as drain-induced barrier lowering and hot carrier effect, have surfaced. The mainstream solution is to use 3D structure devices, e.g. FinFET and Gate-All-Around (GAA) FET, to increase the gate controllability. However, we can still use FD-SOI of the 2D planar structure to eliminate SCE because of its excellent electrostatic control of channel with no channel doping required. Compared to FinFET, a simpler process is used in FD-SOI, and we can control its threshold voltage by modifying back bias or changing substrate doping.
    This thesis demonstrates a body-biasing 6T-SRAM design technique using 5nm-node mutil-Vt FD-SOI devices, which offers three operation modes: high-performance mode, standard mode and low-voltage mode, without complicated process technology requirements. The read SNM and write current are demonstrated using Synopsys Sentaurus TCAD mixed-mode simulation. We also make use of the technique to optimize Vmin of the 6T-SRAM based on 5nm-node multi-Vt FD-SOI devices. By properly selecting the back bias, the lowest Vmin is achieved for each of the three operation modes: high-performance, standard and low-voltage modes. The proposed technique offers a design flexibility for optimizing the SRAM performance and yield by adjusting the back bias without complicated process technology requirements.

    Contents 摘要 I Abstract III 誌謝 V Contents VI Table Captions VIII Figure Captions IX CHAPTER 1 INTRODUCTION 1 1-1 Semiconductor device evolution 1 1-2 Background and motivation 2 1-3 Simulation tools introduction 4 1-4 Overview of the thesis 5 CHAPTER 2 EVALUATION OF FD-SOI MOSFET AT 5NM TECHNOLOGY NODE 6 2-1 Device structure and electric characteristic at 5nm technology 6 2-2 Analytical model for the threshold voltage of ultra-thin body FD-SOI devices 9 2-3 Features of FD-SOI MOSFET 13 2-3-1 Back bias dependent 14 2-3-2 Substrate doping level dependent 16 2-3-3 Body thickness dependent 17 2-3-4 Box thickness dependent 18 2-4 Intrinsic delay 19 CHAPTER 3 6-T STATIC RANDOM ACCESS MEMORY 21 3-1 The basic operation of a 6-T SRAM 21 3-1-1 read operation 22 3-1-2 write operation 23 3-2 Staility of read and write for a SRAM cell 24 3-2-1 Read static noise margin extracting 24 3-2-2 Write-ability current extracting 26 3-3 Multi operation mode design for SRAM cells 26 3-3-1 Design considerations 27 3-3-2 SNM and IW in different mode 27 CHAPTER 4 SRAM YIELD ESTIMATION AND OPTIMIZATION 34 4-1 Compact macro-model of SRAM 34 4-1-1 I-V curve predicting 34 4-1-2 SNM and IW predicting 36 4-2 yield estimation 37 4-3 Read and write yields in different operating mode 39 4-4 Minimum operation voltage (Vmin) 44 4-4-1 Dynamic SRAM design 45 4-4-2 Optimization of the SRAM design for a fixed VB 47 CHAPTER 5 CONCLUSION 49 Appendix Analytical MOSFET Model 51 References 52

    [1] D. A. Neamen, Semiconductor Physics and devices. 2012.
    [2] Intel technology roadmap. Available: http://www.intel.com
    [3] K. J. Kuhn, "CMOS scaling for the 22nm node and beyond: Device physics and technology," in VLSI Technology, Systems and Applications (VLSI-TSA), 2011 International Symposium on, 2011, pp. 1-2: IEEE.
    [4] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, "Silicon device scaling to the sub-10-nm regime," Science, vol. 306, no. 5704, pp. 2057-2060, 2004.
    [5] L. Geppert, "The amazing vanishing transistor act," IEEE spectrum, vol. 39, no. 10, pp. 28-33, 2002.
    [6] H.-K. Lim and J. G. Fossum, "Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET's," IEEE Transactions on Electron Devices, vol. 30, no. 10, pp. 1244-1251, 1983.
    [7] H. M. Fahad and M. M. Hussain, "Are nanotube architectures more advantageous than nanowire architectures for field effect transistors?," Scientific reports, vol. 2, 2012.
    [8] J. Hartmann, "“Planar fd-soi technology at 28nm and below for extremely power-efficient socs," Las Vegas Show, 2012.
    [9] J. Martino, L. Lauwers, J. Colinge, and K. De Meyer, "Model for the potential drop in the silicon substrate for thin-film SOI MOSFETs," Electronics Letters, vol. 26, no. 18, pp. 1462-1464, 1990.
    [10] V. T. Itocazu et al., "Threshold voltage modeling for dynamic threshold UTBB SOI in different operation modes," in Meeting Abstracts, 2015, no. 20, pp. 1346-1346: The Electrochemical Society.
    [11] V. T. Itocazu, V. Sonnenberg, E. Simoen, C. Claeys, and J. A. Martino, "Substrate effect on UTBB SOI nMOSFET," in Microelectronics Technology and Devices (SBMicro), 2013 Symposium on, 2013, pp. 1-4: IEEE.
    [12] S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaudo, "Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects," Solid-State Electronics, vol. 51, no. 2, pp. 239-244, 2007.
    [13] S. Burignat et al., "Substrate impact on threshold voltage and subthreshold slope of sub-32nm ultra thin SOI MOSFETs with thin buried oxide and undoped channel," Solid-State Electronics, vol. 54, no. 2, pp. 213-219, 2010.
    [14] F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, "Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance," IEEE Electron Device Letters, vol. 8, no. 9, pp. 410-412, 1987.
    [15] V. Itocazu, V. Sonnenberg, E. Simoen, C. Claeys, and J. Martino, "Analysis of the Silicon Film Thickness and the Ground Plane Influence on Ultra Thin Buried Oxide SOI nMOSFETs," ECS Transactions, vol. 49, no. 1, pp. 511-517, 2012.
    [16] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices. Cambridge university press, 2013.
    [17] E. Seevinck, F. J. List, and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells," IEEE Journal of solid-state circuits, vol. 22, no. 5, pp. 748-754, 1987.
    [18] Q. Chen et al., "Critical current (I CRIT) based SPICE model extraction for SRAM cell," in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 448-451: IEEE.
    [19] A. E. Carlson, Device and circuit techniques for reducing variation in nanoscale SRAM. University of California, Berkeley, 2008.
    [20] C. Shin, "Advanced MOSFET designs and implications for SRAM scaling," University of California, Berkeley, 2011.
    [21] B. H. Calhoun and A. P. Chandrakasan, "Static noise margin variation for sub-threshold SRAM in 65-nm CMOS," IEEE Journal of solid-state circuits, vol. 41, no. 7, pp. 1673-1679, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE