研究生: |
白佩寰 Pai, Pei-Huan |
---|---|
論文名稱: |
無機銫鉍鹵化物鈣鈦礦薄膜之人工突觸行為之研究 Artificial Synaptic Behavior of Inorganic Cesium Bismuth Halide Perovskite Thin Films |
指導教授: |
陳昭宇
Chen, Chao-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 類神經網路 、人工突觸元件 、鈣鈦礦 |
外文關鍵詞: | Artificial Neural Network, Artificial Synaptic Device, Perovskite |
相關次數: | 點閱:65 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著類神經網路系統的崛起,有許多研究團隊將鹵化物鈣鈦礦材料製成元件,應用於人工突觸的操作,並成功地透過外在刺激如電脈衝或光脈衝來調控元件受到刺激後所產生的電流大小,以此來模擬生物突觸權重上的變化,並且將其整合於類神經運算系統中來運作,期許實現能夠同步運算及記憶的高效能網路。
在鹵化物鈣鈦礦元件中,可以透過對元件施加電場,使鈣鈦礦中的鹵素陰離子從原本的位置脫離遷移至電極與鈣鈦礦的交界處,形成鹵素陰離子空缺,並再受到電場的驅動而遷移形成局部導電路徑,使器件的電阻降低,進入低電阻狀態。而施加反向電場時,陰離子空缺的遷移方向相反,導致先前形成的導電路徑被破壞轉變回高電阻狀態。而此特性使得鹵化物鈣鈦礦材料可以被使用於人工突觸的元件,來模仿生物突觸之行為。
而因一般常用的鹵化鉛鈣鈦礦中的鉛金屬中的毒性對生物及環境都會造成影響,因此在本研究中使用對環境較友善且擁有良好的環境穩定性之無機銫鉍鹵化物鈣鈦礦Cs3Bi2I9-xBrx作為人工突觸元件之主動層,並透過改變其鹵素離子I -與Br -之比例,來觀察其薄膜以及做成元件時的表現。首先,在 4.1節透過對薄膜進行其吸收圖譜、拍攝SEM以及XRD的量測,可以發現當x逐漸增加後材料會逐漸從Cs3Bi2I9之P63/mmc結構,逐漸轉變為Cs3Bi2Br9之P m結構,且在Cs3Bi2I7Br2(x = 2)時會同時出現以及兩種結構的特徵,而在Cs3Bi2I6Br3(x = 3)時會有最佳的薄膜結晶性。
接著在 4.2節將其製作成元件進行電性的量測,首先透過給予元件正/負電壓的掃幅來得到其電壓電流特性曲線,並以此來觀察各元件之電阻轉換行為,可以發現在Cs3Bi2I6Br3(x = 3)薄膜之元件有最低的暗電流值及最大的電流開關比,呼應到對薄膜的分析可以驗證當薄膜中缺陷較少的時候可以降低其暗電流的值,因為材料中的缺陷會降低電子躍遷至導帶的能障,使得元件阻值變小,暗電流提高。再來透過給予元件不同條件的電脈衝刺激,模擬各種突觸可塑性行為,如成對脈衝促進行為(paired pulse promotion,PPF)、脈衝次數依賴可塑性(spike-number-dependent plasticity,SNDP)、脈衝頻率依賴可塑性(spike-frequency-dependent plasticity,SFDP)及脈衝持續時間依賴可塑性(spike-duration-dependent plasticity,SDDP)。並發現在各項量測中Cs3Bi2I6Br3(x = 3)薄膜之元件相較於其他元件皆擁有最佳的電流增益情形,表示其具有最佳的人工突觸特性,其原因為Cs3Bi2I6Br3(x = 3)薄膜擁有最佳的結晶性以及存在最少的缺陷,使得此元件在脈衝讀取偏壓下擁有最低的讀取電流,並且也因此使得鹵素陰離子與鹵素陰離子空缺在遷移時需要克服的遷移勢壘更大,因此在給予電脈衝刺激形成陰離子空缺導電通道後,比起其他元件會需要更長的時間進行離子遷移使元件回到原本的高阻態狀態,因此使Cs3Bi2I6Br3(x = 3)的元件可以擁有更高的電流增益變化量。
In recent years, with the rise of artificial neural network systems, numerous research teams have developed devices using halide perovskite materials for applications in artificial synapses. These devices can successfully regulate the magnitude of the generated electrical current through external stimuli such as electrical or optical pulses. This approach mimics the synaptic weight changes observed in biological synapses and integrates these components into neural computing systems, aiming to achieve highly efficient networks capable of synchronous computation and memory.
Lead halide perovskite materials have been widely applied in artificial synaptic devices with numerous successful applications. However, the toxicity of lead metal poses significant limitations on the future development of devices based on this material, as it can have adverse effects on the environment. To address the toxicity of lead halide perovskites commonly used, in this study we use environmentally friendly and stable inorganic cesium bismuth halide perovskite, Cs3Bi2I9-xBrx, as the active layer for artificial synaptic device. By altering the ratio of halide ions I- and Br-, the performance of the thin films and the fabricated devices was investigated.
After conducting various measurements, it was observed that Cs3Bi2I6Br3 (x = 3) demonstrated superior performance with improved crystallinity, reduced dark current, and the best synaptic plasticity behaviors, making it a promising candidate for efficient artificial synaptic applications.
[1] J. Backus, "Can programming be liberated from the von Neumann style? a functional style and its algebra of programs," Commun. ACM, vol. 21, no. 8, pp. 613–641, 1978.
[2] W. R. Leonard and M. L. Robertson, "Evolutionary perspectives on human nutrition: The influence of brain and body size on diet and metabolism," American Journal of Human Biology, vol. 6, no. 1, pp. 77-88, 1994/01/01 1994.
[3] S. Herculano-Houzel, K. Catania, P. R. Manger, and J. H. Kaas, "Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass," Brain Behavior and Evolution, vol. 86, no. 3-4, pp. 145-163, 2015.
[4] P. R. Hof et al., "Chapter 1 - Cellular Components of Nervous Tissue," in From Molecules to Networks (Third Edition), J. H. Byrne, R. Heidelberger, and M. N. Waxham, Eds. Boston: Academic Press, 2014, pp. 3-21.
[5] D. Kuzum, S. Yu, and H. S. Philip Wong, "Synaptic electronics: materials, devices and applications," Nanotechnology, vol. 24, no. 38, p. 382001, 2013/09/02 2013.
[6] R. A. John et al., "Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity," Advanced Materials, vol. 30, no. 25, p. 1800220, 2018.
[7] B. P. Bean, "The action potential in mammalian central neurons," Nature Reviews Neuroscience, vol. 8, no. 6, pp. 451-465, 2007/06/01 2007.
[8] H. Chen, H. Li, T. Ma, S. Han, and Q. Zhao, "Biological function simulation in neuromorphic devices: from synapse and neuron to behavior," Science and Technology of Advanced Materials, vol. 24, no. 1, p. 2183712, 2023/12/31 2023.
[9] S. J. Kim, S. Kim, and H. W. Jang, "Competing memristors for brain-inspired computing," iScience, vol. 24, no. 1, p. 101889, 2021/01/22/ 2021.
[10] B. Mohammad et al., "State of the art of metal oxide memristor devices," Nanotechnology Reviews, vol. 5, no. 3, pp. 311-329, 2016.
[11] Y. Huang et al., "Triple-Cation Perovskite Resistive Switching Memory with Enhanced Endurance and Retention," ACS Applied Electronic Materials, vol. 2, no. 11, pp. 3695-3703, 2020/11/24 2020.
[12] "Perovskite Materials, Devices and Integration," ed. Rijeka: IntechOpen, 2020.
[13] B. Sueoka et al., "A synaptic memristor based on natural organic honey with neural facilitation," Organic Electronics, vol. 109, p. 106622, 2022/10/01/ 2022.
[14] H. Kim, J. S. Han, S. G. Kim, S. Y. Kim, and H. W. Jang, "Halide perovskites for resistive random-access memories," Journal of Materials Chemistry C, 10.1039/C8TC06031B vol. 7, no. 18, pp. 5226-5234, 2019.
[15] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, and A. Salleo, "Organic electronics for neuromorphic computing," Nature Electronics, vol. 1, no. 7, pp. 386-397, 2018/07/01 2018.
[16] T. Masquelier, R. Guyonneau, and S. J. Thorpe, "Competitive STDP-Based Spike Pattern Learning," Neural Computation, vol. 21, no. 5, pp. 1259-1276, 2009.
[17] H. Tan, S. Majumdar, Q. Qin, J. Lahtinen, and S. van Dijken, "Mimicking Neurotransmitter Release and Long-Term Plasticity by Oxygen Vacancy Migration in a Tunnel Junction Memristor," Advanced Intelligent Systems, vol. 1, no. 2, p. 1900036, 2019.
[18] Y. Li et al., "Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems," Scientific Reports, vol. 4, no. 1, p. 4906, 2014/05/09 2014.
[19] Z. Wang et al., "Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors," Advanced Materials, vol. 33, 10/28 2021.
[20] S. Chen and J. Huang, "Recent Advances in Synaptic Devices Based on Halide Perovskite," ACS Applied Electronic Materials, vol. 2, no. 7, pp. 1815-1825, 2020/07/28 2020.
[21] J. Zhang, S. Dai, Y. Zhao, J. Zhang, and J. Huang, "Recent Progress in Photonic Synapses for Neuromorphic Systems," Advanced Intelligent Systems, vol. 2, no. 3, p. 1900136, 2020.
[22] J.-G. Min and W.-J. Cho, "Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics," Micromachines, vol. 12, no. 10, p. 1259, 2021.
[23] S. I. Kim et al., "Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing," Advanced Electronic Materials, vol. 5, 03/01 2019.
[24] M.-K. Kim, Y. Park, I.-J. Kim, and J.-S. Lee, "Emerging Materials for Neuromorphic Devices and Systems," iScience, vol. 23, no. 12, p. 101846, 2020/12/18/ 2020.
[25] G. Grancini and M. K. Nazeeruddin, "Dimensional tailoring of hybrid perovskites for photovoltaics," Nature Reviews Materials, vol. 4, pp. 4-22, January 01, 2019 2019.
[26] D. B. Mitzi, "Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)," Chemistry of Materials, vol. 8, no. 3, pp. 791-800, 1996/01/01 1996.
[27] P. Gao, M. Grätzel, and M. K. Nazeeruddin, "Organohalide lead perovskites for photovoltaic applications," Energy & Environmental Science, 10.1039/C4EE00942H vol. 7, no. 8, pp. 2448-2463, 2014.
[28] M. Saliba et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, 10.1039/C5EE03874J vol. 9, no. 6, pp. 1989-1997, 2016.
[29] G. Grancini and M. K. Nazeeruddin, "Dimensional tailoring of hybrid perovskites for photovoltaics," Nature Reviews Materials, vol. 4, no. 1, pp. 4-22, 2019/01/01 2019.
[30] Q. A. Akkerman and L. Manna, "What Defines a Halide Perovskite?," ACS Energy Letters, vol. 5, no. 2, pp. 604-610, 2020/02/14 2020.
[31] Z. Xiao et al., "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," Nature Materials, vol. 14, no. 2, pp. 193-198, 2015/02/01 2015.
[32] W. Xu et al., "Organometal Halide Perovskite Artificial Synapses," Advanced Materials, vol. 28, no. 28, pp. 5916-5922, 2016.
[33] S. G. Kim et al., "Dual-Phase All-Inorganic Cesium Halide Perovskites for Conducting-Bridge Memory-Based Artificial Synapses," Advanced Functional Materials, vol. 29, no. 49, p. 1906686, 2019.
[34] Z. Xiao and J. Huang, "Energy-Efficient Hybrid Perovskite Memristors and Synaptic Devices," Advanced Electronic Materials, vol. 2, no. 7, p. 1600100, 2016.
[35] X. Zhu and W. D. Lu, "Optogenetics-inspired tunable synaptic functions in memristors," ACS nano, vol. 12, no. 2, pp. 1242-1249, 2018.
[36] H. Jin, Y.-G. Kim, Z. Jin, W. Liu, and L. Lei, "A dual-functional two-terminal memristor based on Cs4PbBr6 perovskite for high density data storage and synaptic plasticity," Ceramics International, vol. 48, no. 22, pp. 33949-33956, 2022/11/15/ 2022.
[37] S. Ham, S. Choi, H. Cho, S.-I. Na, and G. Wang, "Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine-Facilitated Synaptic Activity," Advanced Functional Materials, vol. 29, no. 5, p. 1806646, 2019.
[38] M. Xiao, D. Shen, K. P. Musselman, W. W. Duley, and Y. N. Zhou, "Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt," Nanoscale, vol. 10, no. 13, pp. 6069-6079, 2018.
[39] H. Röhm, T. Leonhard, A. D. Schulz, S. Wagner, M. J. Hoffmann, and A. Colsmann, "Ferroelectric properties of perovskite thin films and their implications for solar energy conversion," Advanced Materials, vol. 31, no. 26, p. 1806661, 2019.
[40] H.-Y. Zhang et al., "Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric," Journal of the American Chemical Society, vol. 142, no. 10, pp. 4925-4931, 2020.
[41] H.-Y. Zhang et al., "A three-dimensional lead halide perovskite-related ferroelectric," Journal of the American Chemical Society, vol. 142, no. 10, pp. 4604-4608, 2020.
[42] F. Luo, Y. Wu, J. Tong, F. Tian, and X. Zhang, "Resistive switching and artificial synaptic performances of memristor based on low-dimensional bismuth halide perovskites," Nano Research, 2023/04/28 2023.
[43] B.-B. Yu et al., "Alloy-induced phase transition and enhanced photovoltaic performance: The case of Cs 3 Bi 2 I 9− x Br x perovskite solar cells," Journal of materials chemistry A, vol. 7, no. 15, pp. 8818-8825, 2019.
[44] D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, "Conducting Layered Organic-inorganic Halides Containing 〈110〉-Oriented Perovskite Sheets," Science, vol. 267, no. 5203, pp. 1473-1476, 1995.
[45] D. B. Mitzi, C. A. Feild, Z. Schlesinger, and R. B. Laibowitz, "Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3," Journal of Solid State Chemistry, vol. 114, no. 1, pp. 159-163, 1995/01/01/ 1995.
[46] M. Kato, H. Kosugi, A. Kodaira, H. Hagiwara, and B. Vogler, "Stereocontrolled synthesis of the key intermediate for the enantioselective synthesis of clerodane natural products," Tetrahedron Letters, vol. 38, no. 39, pp. 6845-6848, 1997/09/29/ 1997.
[47] D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, "Stability of perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 147, pp. 255-275, 2016/04/01/ 2016.
[48] C.-W. Chang, Z.-W. Kwang, T.-Y. Hsieh, T.-C. Wei, and S.-Y. Lu, "High performance perovskite solar cells fabricated from porous PbI2-xBrx prepared with mixture solvent pore generation treatment," Electrochimica Acta, vol. 292, pp. 399-406, 2018/12/01/ 2018.
[49] L.-Y. Wang et al., "Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells," Nanoscale, 10.1039/C7NR06410A vol. 9, no. 45, pp. 17893-17901, 2017.
[50] F. Fu et al., "Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells," Advanced Science, vol. 5, no. 3, p. 1700675, 2018.
[51] Z. Xiao et al., "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, 10.1039/C4EE01138D vol. 7, no. 8, pp. 2619-2623, 2014.
[52] F. Mathies et al., "Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells," Journal of Materials Chemistry A, 10.1039/C6TA07972E vol. 4, no. 48, pp. 19207-19213, 2016.
[53] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, and H.-G. Boyen, "Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach," Advanced Materials, vol. 26, no. 13, pp. 2041-2046, 2014.
[54] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells," Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2014.
[55] C. Gao et al., "Additive engineering to improve the efficiency and stability of inverted planar perovskite solar cells," Journal of Materials Chemistry C, 10.1039/C8TC02507J vol. 6, no. 30, pp. 8234-8241, 2018.
[56] F. Ünlü, M. Deo, S. Mathur, T. Kirchartz, and A. Kulkarni, "Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics," Journal of Physics D: Applied Physics, vol. 55, no. 11, p. 113002, 2021/11/10 2022.
[57] L. Zhang, K. Wang, and B. Zou, "Bismuth Halide Perovskite-Like Materials: Current Opportunities and Challenges," ChemSusChem, vol. 12, no. 8, pp. 1612-1630, 2019.
[58] C. Wu et al., "From Pb to Bi: a promising family of Pb‐free optoelectronic materials and devices," Advanced Energy Materials, vol. 10, no. 13, p. 1902496, 2020.
[59] B. W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. Johansson, "Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application," Advanced materials, vol. 27, no. 43, pp. 6806-6813, 2015.
[60] J. Pal et al., "Synthesis and optical properties of colloidal M3Bi2I9 (M= Cs, Rb) perovskite nanocrystals," The Journal of Physical Chemistry C, vol. 122, no. 19, pp. 10643-10649, 2018.
[61] A. J. Lehner et al., "Crystal and electronic structures of complex bismuth iodides A 3Bi2I9 (A= K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics," Chemistry of Materials, vol. 27, no. 20, pp. 7137-7148, 2015.
[62] M. I. Saidaminov, O. F. Mohammed, and O. M. Bakr, "Low-dimensional-networked metal halide perovskites: the next big thing," ACS Energy Letters, vol. 2, no. 4, pp. 889-896, 2017.
[63] F. Ünlü et al., "Single-or double A-site cations in A 3 Bi 2 I 9 bismuth perovskites: What is the suitable choice?," Journal of materials research, vol. 36, pp. 1794-1804, 2021.
[64] K.-H. Hong, J. Kim, L. Debbichi, H. Kim, and S. H. Im, "Band gap engineering of Cs3Bi2I9 perovskites with trivalent atoms using a dual metal cation," The Journal Of Physical Chemistry C, vol. 121, no. 1, pp. 969-974, 2017.
[65] S. Chatterjee, J. Payne, J. T. Irvine, and A. J. Pal, "Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin–orbit coupling versus lattice strain," Journal of Materials Chemistry A, vol. 8, no. 8, pp. 4416-4427, 2020.
[66] K. M. McCall, C. C. Stoumpos, O. Y. Kontsevoi, G. C. Alexander, B. W. Wessels, and M. G. Kanatzidis, "From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron–phonon coupling," Chemistry of Materials, vol. 31, no. 7, pp. 2644-2650, 2019.
[67] Z. Xiao et al., "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," (in eng), Nat Mater, vol. 14, no. 2, pp. 193-8, Feb 2015.
[68] E. J. Yoo, M. Lyu, J.-H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, "Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices," Advanced Materials, vol. 27, no. 40, pp. 6170-6175, 2015.
[69] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," Journal of Materials Chemistry C, 10.1039/C6TC02503J vol. 4, no. 33, pp. 7824-7830, 2016.
[70] V. Gupta, G. Lucarelli, S. Castro, T. Brown, and M. Ottavi, "Perovskite based Low Power Synaptic Memristor Device for Neuromorphic application," in 2019 14th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), 2019, pp. 1-6.
[71] R. A. John et al., "Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation," Advanced Materials, vol. 30, no. 51, p. 1805454, 2018.
[72] S.-I. Kim et al., "Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing," Advanced Electronic Materials, vol. 5, no. 9, p. 1900008, 2019.
[73] H. Tian et al., "Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing," ACS Nano, vol. 11, no. 12, pp. 12247-12256, 2017/12/26 2017.
[74] Y. Hu et al., "Ultrathin Cs3Bi2I9 Nanosheets as an Electronic Memory Material for Flexible Memristors," Advanced Materials Interfaces, vol. 4, no. 14, p. 1700131, 2017.
[75] C. Cuhadar, S.-G. Kim, J.-M. Yang, J.-Y. Seo, D. Lee, and N.-G. Park, "All-Inorganic Bismuth Halide Perovskite-Like Materials A3Bi2I9 and A3Bi1.8Na0.2I8.6 (A = Rb and Cs) for Low-Voltage Switching Resistive Memory," ACS Applied Materials & Interfaces, vol. 10, no. 35, pp. 29741-29749, 2018/09/05 2018.
[76] Z. Xiong et al., "Air-Stable Lead-Free Perovskite Thin Film Based on CsBi3I10 and Its Application in Resistive Switching Devices," ACS Applied Materials & Interfaces, vol. 11, no. 33, pp. 30037-30044, 2019/08/21 2019.
[77] J. Lao et al., "An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing," Journal of Materials Chemistry C, 10.1039/D1TC00655J vol. 9, no. 17, pp. 5706-5712, 2021.
[78] F. Luo, Y. Wu, J. Tong, G. Qin, and X. Zhang, "Two-dimensional Cs3Bi2I6Cl3 perovskite for resistive switching behaviors and artificial synaptic simulation," Journal of Alloys and Compounds, vol. 938, p. 168498, 2023/03/25/ 2023.
[79] P. Scherrer, "Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1918, pp. 98-100, 1918.
[80] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, "Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application," Advanced Materials, vol. 27, no. 43, pp. 6806-6813, 2015.
[81] B. Yang et al., "Lead‐free, air‐stable all‐inorganic cesium bismuth halide perovskite nanocrystals," Angewandte Chemie International Edition, vol. 56, no. 41, pp. 12471-12475, 2017.
[82] M. Long et al., "Large-Grain Formamidinium PbI3–xBrx for High-Performance Perovskite Solar Cells via Intermediate Halide Exchange," Advanced Energy Materials, vol. 7, no. 12, p. 1601882, 2017.
[83] G. R. Savich, Analysis and suppression of dark currents in mid-wave infrared photodetectors. University of Rochester, 2015.
[84] R. A. John et al., "Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing," Small, vol. 13, no. 32, p. 1701193, 2017.