簡易檢索 / 詳目顯示

研究生: 林郁妤
Lin, Yu-Yu
論文名稱: 液滴間距對燃燒中乳化液滴串的影響
Influence of Drop Spacing on Burning of an Emulsified-Drop Stream
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 63
中文關鍵詞: 乳化液滴液滴間距液滴間的交互作用微爆
外文關鍵詞: Emulsion Drop, Drop Spacing, Drop Interaction, Micro-explosion
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以自由液滴法來觀察不同初始間距下的水-十二烷乳化液滴串進入一高溫含氧環境的燃燒特性。液滴初始間距參數(Si)分別為2.5、5、10、40、70、100。其中液滴初始間距參數 (Si = s/di) 的定義為兩顆液滴中心之間的距離(s)與液滴初始直徑(di)的比值。實驗中環境含氧量(ΩO2)固定為21%,乳化液滴的含水量(β)則分別為5 vol. %, 20 vol. % 與30 vol. %,而乳化液滴的初始直徑分別為550 μm與450 μm。實驗結果顯示:在所有的實驗參數下,均可以觀察到液滴火焰轉變的現象。在Si > 10的情況下,可以觀察到液滴火焰由一個藍色的球形火焰,轉變成環包火焰,以及黃色尾流火焰的液滴火焰變換過程,最後火焰會於下游熄滅。而在Si = 2.5、5的參數下,可以觀察到液滴火焰串聯合併的現象,而此合併的火焰則形成一個明亮的火焰管,在火焰管內的液滴則是有相互追撞與黏合的現象發生,以及可以觀察到碳灰層的產生。此外,在每個實驗條件下,皆可發現液滴膨脹的現象。然而乳化液滴微爆的現象則只發生於Si = 40、di = 450 μm、β = 5 %與20 %之兩條件下,且微爆發生處位於燃燒室下游。在本實驗中也發現乳化液滴的蒸發率並不是一個定值,並且會受到液滴初始直徑大小與含水量的影響。

    Combustion characteristics of water-in-dodecane emulsion drops with various initial spacings were studied experimentally by using a free-falling drop burning apparatus. The initial drop spacing (Si) of the drop string was 2.5, 5, 10, 40, 70, or 100. Si (s/di) was defined as the ratio of the drop center-to-center distance (s) to the initial drop diameter (di). The oxygen concentration (ΩO2) was fixed at 21%, while two drop sizes, 550 μm and 450 μm, and three water contents (β), 5 vol. %, 20 vol. %, and 30 vol. %, were compared. These results showed that the transition of the drop flame occurred for all cases in the experiment. For Si > 10 along the flow direction, the flame around the drops would change from a blue spherical flame to a yellow flame and a wake flame, and the drop flame extinguished later in the downstream region. Soot particles was generated and drop collision and merging occurred to form a flame tube for Si = 2.5 in all cases. Besides, drop expansion was also observed in all cases, while micro-explosion only occurred in the far downstream region for the case of Si = 40, di = 450 μm, β = 5 % and 20 %. It was also shown that the emulsion drop evaporation rate was not a constant, and the trend of the drop evaporation rate was strongly influenced by the initial drop size and the water content.

    Contents..................................................I List of Tables..........................................III List of Figures..........................................IV Nomenclature.............................................VI 1. Introduction...........................................1 1.1. Single drop combustion...............................2 1.2. Drop interaction.....................................6 1.3. Objectives..........................................14 2. Experimental apparatus and method.....................15 2.1. Emulsified fuel production..........................15 2.2. Combustion system...................................15 2.3. Drop string generation system.......................16 2.4. Experimental method.................................17 3. Results and Discussion................................18 3.1. Images of burning-drop string.......................18 3.1.1. Flame streak......................................18 3.1.2. Influence of drop size............................20 3.1.3. Influence of water content........................20 3.2. Flame transition process............................21 3.3. Micro-explosion.....................................23 3.4. Evaporation rate of emulsion drops..................26 3.4.1. Evaporation rate..................................26 3.4.2. Influence of drop size............................27 3.4.3. Influence of water content........................27 3.4.4. Comparison of evaporation rate....................28 4. Conclusions...........................................30 5. References............................................32 Tables and Figures.......................................37 List of Publications.....................................63 List of Tables Table 2.1. Properties of water and dodecane………………..……………….37 Table 2.2. Properties of surfactant………………………...…………………37 Table 2.3. Parameters of emulsion drop experiment…………..…………….37 List of Figures Figure 1.1. Phase microscopy image of emulsified fuel…………….…….38 Figure 1.2. Variation of single drop flame with time.i..…………….……..38 Figure 1.3. Images of drops and flames for Si =2.5 in ΩO2=21%.................39 Figure 1.4. Images of drops and flames for Si =5 in ΩO2=21%....................39 Figure 2.1. Experimental apparatus………….……...……………………..40 Figure 2.2. Axial temperature distribution inside the combustion chamber……………………………………………………….41 Figure 3.1. Burning drops string of various initial drop spacing (di = 550 μm, β = 5 %)……….…………………...…….…….42 Figure 3.2. Variation of the dimensionless flame width of flame streak with x for various Si.i(di = 550 μm, β = 5 %)i.........………………..43 Figure 3.3. Burning drops string of various initial drop spacing (di = 450 μm, β = 5 %)..………..………..………….………...44 Figure 3.4. Burning drops string of various initial drop spacing (di = 450 μm, β = 20 %)..…… ……..………….……………...45 Figure 3.5. Burning drops string of various initial drop spacing (di = 450 μm, β = 30 %)ii.……...……………………………..46 Figure 3.6. Ignition and flame transition process of drop string….……….47 Figure 3.7. Drop image taken by the CCD camera. (di = 550 μm, β = 5%, Si = 2.5)………………………………..48 Figure 3.8. Drop image taken by the CCD camera. (di = 550 μm, β = 5 %, Si = 5)…...……………………….……49 Figure 3.9. Image of emulsion drop expansion….………………….……..49 Figure 3.10. I The image of the micro-explosion flame. (di = 450 μm, β = 5 %, Si = 40)………..…..…………...……...50 Figure 3.11. I The image of the micro-explosion flame. (di = 450 μm, β = 20 %, Si = 40)...………..…………...………51 Figure 3.12. IMicro-explosion image (1)…….………..…..…......……….....52 Figure 3.13. iMicro-explosion image (2)i….………......…………...……….53 Figure 3.14. iMicro-explosion image (3)……………...…………………….54 Figure 3.15. iMicro-explosion modesi...……………………………...……..55 Figure 3.16.aVariation of the drop size and local evaporation rate (k') at different initial drop spacing. (di = 550 μm, β = 5 %)……...…56 Figure 3.17.aVariation of the drop size and local evaporation rate (k') at different initial drop spacing. (di = 450 μm, β = 5 %)………...57 Figure 3.18.aVariation of the drop size and local evaporation rate (k') at different initial drop spacing. (di = 450 μm, β = 20 %)…….…58 Figure 3.19.aVariation of the drop size and local evaporation rate (k') at different initial drop spacing. (di = 450 μm, β = 30 %).............59 Figure 3.20. IDrop expansion rate at x = 7 cm…..……………….………….60 Figure 3.21.aComparison of evaporation rate (k) at different initial drop spacing for all cases…………………………………………...61 Figure 3.22. aEvaporation rate constant (k) at different initial drop spacing for pure drop……………………………………………….…62

    1. Ragland, K. W., Bryden, K. M., “Combustion Engineering,” CRC Press, New York, 2011.
    2. Law, C. K., “Recent advances in droplet vaporization and combustion,” Prog. Energy Combust. Sci., Vol. 8, p. 171, 1982.
    3. Law, C. K., “Combustion Physics,” Cambridge University Press, New York, 2006.
    4. Kadota, T., Yamasaki, H., “Recent advances in the combustion of water fuel emulsion,” Prog. Energy Combust. Sci., Vol. 28, p. 385, 2002.
    5. Sirignano, W. A., “Fluid Dynamics and Transport of Droplets and Sprays,” Cambridge University Press, New York, 2010.
    6. Dryer, F. L., “Water addition to practical combustion system-concepts and applications,” Proc. Combust. Inst., Vol. 16, p.279, 1977.
    7. Warnatz, J., Maas, U., Dibble, R. W., “Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutants formation,” Springer Berlin Heidelberg, New York, 2006.
    8. Glassman, I., Yetter, R. A., “Combustion,” Academic Press, New York, 2008.
    9. Turns, S. R., “An introduction to combustion, concepts and applications,” McGraw-Hill, New York, 2011.
    10. Ivanov, V. M., Nefedov, P. I., “Experimental investigation of the combustion process in nature and emulsified fuels,” Trudy Instituta Goryachikh Iskopayemykh, Vol. 19, p. 35, 1962.
    11. Avedisian, C. T., Fatehi, M., “An experimental study of the leidenfrost evaporation characteristics of emulsified liquid droplets,” Int. J. Heat and Mass Transfer, Vol. 31, p. 1587, 1988.
    12. Law C. K., Lee, C. H., “Combustion characteristics of water-in-oil emulsion droplets,” Combust. Flame, Vol. 37, p. 125, 1980.
    13. Avedisian, C. T., Anders, P. R., “Bubble Nucleation in Superheated Liquid- Liquid Emulsions,” J. Colloid Interface Sci., Vol. 64, p. 438, 1977.
    14. Wang, C. H., Law, C. K., “Micro-explosion of Fuel Droplets under High Pressure,” Combust. Flame, Vol. 59, p. 53, 1985.
    15. Wang, C. H., Chen, J. T., “An Experiment investigation of the burning characteristics of water-oil emulsions,” Int. Comm. Heat Mass Transfer, Vol. 23,p. 823, 1996.
    16. Tsue, M., Kadota, T., Segawa, D., Yamasaki, H., “Statistical Analysis on Onset of Micro-explosion for An Emulsion Droplet,” Proc. Combust. Inst., Vol. 26, p. 1629, 1996.
    17. Tsue, M., Kadota, T., Segawa, D., Yamasaki, H., Kono, M., “Effect of gravity on onset of micro-explosion for an oil-in-water emulsion droplet,” Proc. Combust. Inst., Vol. 27, p. 2587, 1998.
    18. Segawa, D., Kadota, T., Kohama, R., Enomoto, H., “Ignition of binary mixture droplets by a propagating laminar flame,” Proc. Combust. Inst., Vol. 28, p. 961, 2000.
    19. Kadota, T., Tanaka, H., Segawa, D., Nakaya, S., “Micro-explosion of an emulsion droplet during Leidenfrost burning,” Proc. Combust. Inst., Vol. 31, p.2125, 2007.
    20. Suzuki, Y., Harada, T., Watanabe, H., Shoji, M., Matsushita, Y., Aoki, H., Miura, T., “Visualization of aggregation process of dispersed water droplets and the effect of aggregation on secondary atomization of emulsified fuel droplets,” Proc. Combust. Inst., Vol. 33, p. 2063, 2011.
    21. Kikuchi, M., Wakashima, Y., Yoda, S., Mikami, M.,” Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity,” Proc. Combust. Inst., Vol. 30 p.2001, 2005.
    22. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S., “Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures,” Combust. Flame, Vol. 146, p. 391, 2006.
    23. Nomura, H., Takahashi, M., Ujiie, Y., Hara, H., “Observation of droplet motion during flame spread on three-fuel-droplet array with a pendulum suspender,” Proc. Combust. Inst., Vol. 30, p. 1991, 2005.
    24. Nomura, H., Suganuma, Y., Setani, A., “Microgravity experiments on droplet motion during flame spreading along three-fuel-droplet array,” Proc. Combust. Inst., Vol. 32, p. 2163, 2009.
    25. Umemura, A., Takamori, S., “Percolation theory for flame propagation in non-or less-volatile fuel spray: a conceptual analysis to group combustion excitation mechanism,” Combust. Flame, Vol. 141, p. 336, 2005.
    26. Chiu, H. H., Liu, T. M., “Group combustion of liquid droplets,” Combust. Sci. Tech., Vol. 17, p.127, 1977.
    27. Miyasaka, K., Law, C.K., “Combustion of strongly-interacting linear droplet arrays,” Proc. Combust. Inst., Vol. 18, p.283, 1981.
    28. Xiong, T.Y., Law, C.K., Miyasaka, K., “Interactive vaporization and combustion of binary droplet systems,” Proc. Combust. Inst., Vol. 20, p. 1781, 1985.
    29. Sangiovanni, J. J., Kesten, A. S., “A theoretical and experimental investigation of the ignition of fuel droplets,” Proc. Combust. Inst., Vol. 16, p. 577, 1977.
    30. Sangiovanni, J. J., Labowsky, M., “Burning times of linear fuel droplet arrays: A comparison of experiment and theory,” Combust. Flame, Vol. 47, p.15, 1982.
    31. Umemura, A., “A theoretical study on the unsteady, interactive combustion of a linear fuel droplet stream,” Proc. Combust. Inst., Vol. 23, p.1445, 1990.
    32. Queiroz, M., “The effect of lateral spacing on the combustion dynamics and thermal structure of an array of burning droplet streams,” Combust. Sci. Tech., Vol. 72, p. 1, 1990.
    33. Queiroz, M., Yao, S.C., “Experimental exploration of the thermal structure of an array of burning droplet streams” Combust. Flame, Vol. 82, p. 346, 1990.
    34. Zhu, J. Y., Dunn-Rankin, D., “Temperature characteristics of a combusting droplet stream,” Proc. Combust. Inst., Vol. 24, p. 1473, 1992.
    35. Silvermanand, M. A., Dunn–Rankin, D., “Experimental investigation of a rectilinear droplet stream flame,” Combust. Sci. Tech., Vol. 100, p. 57, 1994.
    36. Shaw, B.D., Dwyer, H.A., Wei, J.B., “Studies on Combustion of Single and Double Streams of Methanol and Methanol/Dodecanol Droplets,” Combust. Sci. Tech., Vol. 174, p. 29, 2002.
    37. Castanet, G., Lebouche, M., Lemoine, F., “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer, Vol. 48, p. 3261, 2005.
    38. Depredurand, V., Castanet, G., Lemoine, F., “Heat and mass transfer in evaporating droplets in interaction: Influence of the fuel,” Int. J. Heat Mass Transfer, Vol. 53, p. 3495, 2010.
    39. Castanet, G., Frackowiak, B., Tropea, C., Lemoine, F., “Heat convection within evaporating droplets in strong aerodynamic interactions,” Int. J. Heat Mass Transfer, Vol. 54, p. 3267, 2011.
    40. Cho, C. P., Kim, H. Y., Yoon, S. S., “Interaction of the burning spherical droplets in oxygen-enriched turbulent environment,” Combust. Flame, Vol. 156, p. 14, 2009.
    41. Lee, D., Kim, H. Y., Yoon, S. S., Cho, C. P., “Group combustion of staggeringly arranged heptane droplets at various Reynolds numbers, oxygen mole-fractions, and separation distances,” Fuel, Vol. 89, p. 1447, 2010.
    42. Chen, C. K., Lin T. H., “Streamwise interaction of burning drops,” Combust. Flame, Vol. 159, p. 1971, 2012.
    43. Wang, C. Y., “Experimental Study on Micro-explosion and Combustion Characteristics of Emulsified Fuel,” Unpublished Master Dissertation, Department of Mechanical Engineering Kun Shan University, 2009.
    44. Chen, C. K., “Streamwise Interaction of Burning Pure/Compound Drops,” National Cheng Kung University, Unpublished Doctor Dissertation, Department of Mechanical Engineering National Cheng Kung University, 2012.

    下載圖示 校內:2016-08-13公開
    校外:2016-08-13公開
    QR CODE