簡易檢索 / 詳目顯示

研究生: 李崇瑋
Lee, Chung-Wei
論文名稱: 異質核核醣核蛋白hrp36參與白蝦Dscam的選擇性剪接
Heterogeneous nuclear ribonucleoprotein hrp36 is involved in Dscam alternative splicing in Litopenaeus vannamei
指導教授: 王涵青
Wang, Han-Ching K.C.
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 44
中文關鍵詞: 異質核核醣核蛋hrp36Dscam白蝦選擇性剪接阻遏子
外文關鍵詞: Heterogeneous nuclear ribonucleoprotein, hrp36, Down syndrome cell adhesion molecule, Litopenaeus vannamei, Alternative splicing repressor
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異質核核糖核蛋白(Heterogeneous nuclear ribonucleoproteins, hnRNPs)在pre-mRNA熟成(maturation)的眾多過程中,扮演著相當重要的角色,例如RNA的包裹作用(RNA packaging)與選擇性剪接作用(alternative splicing),因此不論是存在於線蟲體內或是哺乳動物的hnRNPs,其在基因的序列上皆具有極高的保守性。果蠅hnRNP A1型同源基因- hrp36能參與並調控許多基因的選擇性剪接作用,其中最著名的例子為Down syndrome cell adhesion molecule(Dscam),其可以從單一基因座產生萬種的異構型(isofroms)。在本篇研究中,成功的自白蝦(Litopenaeus vannamei)中鑑定出第一個蝦類hrp36同源基因- Lvhrp36。Lvhrp36的開放譯讀區(open reading fram, ORF)長1,101 bp,預計編碼出366個胺基酸。由胺基酸序列所預測出的蛋白質結構中含有兩組RNA辨識模體(RNA recognition motif, RRM)、C端(C-terminal)富含甘胺酸結構域(glycine-rich domain, GRD)、高度退化性的RNP保留序列RNP-1與RNP-2,另外還具有RGG boxes。經由組織特異性的分析顯示Lvhrp36廣泛性的存在於白蝦體內,且在大部分的組織與器官具有高度的表現量。藉由在白蝦活體內注射雙股RNA將Lvhrp36沉默化,會誘導LvDscam發生異常性的外顯子(Exon)剪接,這個現象在Ig3變異區更為顯著。在LvDscam Ig3的部分,我們共發現了14種不同形式的異構型組合,分別來自3種不同的異常性剪接模式。此外,在Ig2也發現1種異構型組合(來自1種異常性剪接模式);Ig7則是發現3種異構型組合(來自1種異常性剪接模式)。這是目前所發現的第一項證據顯示hrp36可能也參與在Ig7變異區的調控。值得注意的是,至少目前在果蠅的Ig7外顯子群(Ig7 exon cluster)中並不具有hrp36的結合序列。然而,上述的異常性剪接現象無法在每隻經過Lvhrp36沉默化處理的白蝦個體中被觀察到。即使有異常性剪接的現象發生,正常剪接形式的LvDscam仍然較為常見。我們推測上述情況可能是由於其他沒被沉默化且可以替代Lvhrp36功能的蛋白質所造成。綜觀而言,我們的結果顯示Lvhrp36的功能可能作為剪接作用的阻遏子(repressor),藉以調控白蝦L. vannamei Dscam Ig2、Ig3與Ig7變異區的選擇性剪接作用。

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are highly conserved from nematode to mammal because they play an important role in several aspects of pre-mRNA maturation, including RNA packaging and alternative splicing. In Drosophila, the hnRNP A1 homolog hrp36 regulates alternative splicing in several genes, including the Down syndrome cell adhesion molecule (Dscam), which produces tens of thousands of isoforms from one locus. In this study, the first hrp36 gene was identified and characterized from Litopenaeus vannamei (Lvhrp36). Its open reading frame (ORF) contains 1,101 bp encoding 366 amino acids. The deduced Lvhrp36 protein includes two copies of the RNA recognition motif (RRM), a C-terminal glycine-rich domain (GRD), the highly degenerate RNP consensus sequences RNP-1 and RNP-2, and two RGG boxes. Tissue tropism analysis indicated that Lvhrp36 is expressed ubiquitously and at high levels in most tissues. dsRNA silencing of shrimp Lvhrp36 in vivo induced abnormal exon inclusions in LvDscam, especially in the Ig3 variable region. In the Ig3 region, a total of 14 different combinations were arranged in three different types of abnormal inclusion pattern. This compares to a single combination (one abnormal pattern) in Ig2 and three different combinations (one abnormal pattern) in Ig7. This is the first evidence to suggest that hrp36 may be involved in the regulation of the Ig7 variable region, and it is noteworthy because, at least in Drosophila, there are no hrp36 binding sequences in the Ig7 exon cluster. The above aberrant events were not observed in all of the Lvhrp36-silenced shrimp, and even when they occurred, the normal patterns of inclusion were far more common. We hypothesize that this continued prevalence of normal inclusions was probably due to other unsilenced proteins that were able to rescue Lvhrp36’s functionality. Taken together, our results suggest that Lvhrp36 acts as a splicing repressor that regulates alternative splicing events in the Ig2, Ig3 and Ig7 variable regions of shrimp L. vannamei Dscam.

    Chinese Abstract...I English Abstract...III Chinese Acknowledgments...V Table of Contents...VII Table Index...VIII Figure Index...IX Introduction...1 Materials and Methods...4 Result...10 Discussion...16 Acknowledgments...20 References...21 Figure Legends...28 Appendix...44

    1. Modrek B, Lee C. (2002) A genomic view of alternative splicing. Nat Genet. 30:13-19.

    2. Barbazuk WB, Fu Y, McGinnis KM. (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res. 18:1381-1392.

    3. Du G, Dutta N, Lashmit P, Stinski MF. (2011) Alternative splicing of the human cytomegalovirus major immediate-early genes affects infectious-virus replication and control of cellular cyclin-dependent kinase. J Virol. 85:804-817.

    4. Mironov AA, Fickett JW, Gelfand MS. (1999) Frequent alternative splicing of human genes. Genome Res. 9:1288-1293.

    5. Modrek B, Resch A, Grasso C, Lee C. (2001) Genome-wide analysis of alternative splicing using human expressed sequence data. Nucleic Acids Res. 29: 2850-2859.

    6. Kan Z, Rouchka EC, Gish WR, States DJ. (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res. 11: 889-900.

    7. Nilsen TW, Graveley BR. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature. 463:457-463.

    8. Black DL. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 72:291-336.

    9. Blencowe BJ. (2006) Alternative splicing: new insights from global analyses. Cell. 126:37-47.

    10. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 101:671-684.

    11. Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 309:1874-1878.
    12. Dong Y, Taylor HE, Dimopoulos G. (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 4:e229.

    13. Chou PH, Chang HS, Chen IT, Lin HY, Chen YM, Yang HL, Wang KC. (2009) The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev Comp Immunol. 33:1258-1267.

    14. Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR. (1998) DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet. 7:227-237.

    15. Crayton ME 3rd, Powell BC, Vision TJ, Giddings MC. (2006) Tracking the evolution of alternatively spliced exons within the Dscam family. BMC Evol Biol. 6:16.

    16. Singh NN, Singh RN, Androphy EJ. (2007) Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35:371-389.

    17. Blanchette M, Green RE, MacArthur S, Brooks AN, Brenner SE, Eisen MB, Rio DC. (2009) Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members. Mol Cell. 33:438-449.

    18. Cartegni L, Chew SL, Krainer AR. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 3:285-298.

    19. Blanchette M, Green RE, Brenner SE, Rio DC. (2005) Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev. 19:1306-1314.

    20. Yan XB, Tang CH, Huang Y, Fang H, Yu ZQ, Wu LM, Liu RY. (2010) Alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA is regulated by SRp40. Mol Biol Rep. 37:1427-1433.

    21. Borah S, Wong AC, Steitz JA. (2009) Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proc Natl Acad Sci U S A. 106:2577-2582.

    22. Olson S, Blanchette M, Park J, Savva Y, Yeo GW, Yeakley JM, Rio DC, Graveley BR. (2007) A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol. 14:1134-1140.

    23. Han SP, Tang YH, Smith R. (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J. 430:379-392.

    24. Zu K, Sikes ML, Haynes SR, Beyer AL. (1996) Altered levels of the Drosophila HRB87F/hrp36 hnRNP protein have limited effects on alternative splicing in vivo. Mol Biol Cell. 7:1059-1073.

    25. Zu K, Sikes ML, Beyer AL. (1998) Separable roles in vivo for the two RNA binding domains of Drosophila A1-hnRNP homolog. RNA. 4:1585-1598.

    26. Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM. (1993) General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598-2608.

    27. Wang KC, Kondo H, Hirono I, Aoki T. (2010b) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol. 29:94-103.

    28. Wang CH, L C, Leu JH, Chou CM, Yeh PY, Chou HY, Tung MC, Chang CF, Su MS, Kou GH. (1995) Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Organ. 23: 239-242.

    29. Raychaudhuri G, Haynes SR, Beyer AL. (1992) Heterogeneous nuclear ribonucleoprotein complexes and proteins in Drosophila melanogaster. Mol Cell Biol. 12:847-855.

    30. Dreyfuss G, Matunis MJ, Piñol-Roma S, Burd CG. (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 62:289-321.

    31. Park JW, Parisky K, Celotto AM, Reenan RA, Graveley BR. (2004) Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci U S A. 101:15974-15979.

    下載圖示 校內:2014-09-01公開
    校外:2014-09-01公開
    QR CODE