簡易檢索 / 詳目顯示

研究生: 蔡榮勝
Tsai, Jung-Sheng
論文名稱: 運用AVM技術完成吹瓶產業的雲端R2R系統設計與建置
Applying AVM to Obtain Cloud-based R2R Control for the Blow Molding Industry
指導教授: 鄭芳田
Cheng, Fan-Tien
共同指導: 楊浩青
Yang, Haw-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 45
中文關鍵詞: 全自動虛擬量測逐件控制加工精度製程最佳化
外文關鍵詞: Automatic Virtual Metrology, Run-to-Run control, Process Optimization, Precision of Manufacturing
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對全球飲料與瓶裝水市場正在快速成長,飲料與瓶裝水包裝業者對於 PET 吹瓶機之需求量大增。不同地區之消費者有不同的需求和習慣,所以機台製造商為了因應消費者各式各樣之需求與成本考量等因素,必須建置不同的吹瓶機機種,提供給世界各地的客戶選擇。然而,吹瓶機在如此高產能生產需求下,如何提供即時且線上自動品質檢測與智慧化生產功能,輔助使用者達到吹瓶製程最佳化以及品質穩定為實務之挑戰。
    本研究將導入發展符合吹瓶機製程之雲端AVM (Automatic Virtual Metrology)系統以及基於AVM技術之雲端逐件控制 (Run-to-Run, R2R Control)系統,以便能針對吹瓶機生產之瓶身品質進行線上估測,並針對製程資料與瓶身品質進行大數據資料收集與分析,將原離線且具延遲特性之品質抽檢,轉變為線上且即時之品質全檢,再透過 AVM 計算出之精度預測結果與信心指標回饋給 R2R 系統,讓 R2R 系統可自動調整機台參數值,使製程可獲得即時的調適與修正,提升製程能力20%以上。

    Due to the rapid market growth of global beverage and bottled water, the requests on PET blow molding machines from beverage and bottled water manufacturers are increasing. Customers in different areas have various requirements, to respond to all kinds of customer requests and cost considerations, diverse blow-molding machine types should be available for the customers all over the world to choose from. Under such high-capacity production demands, how to provide online and real-time total product inspection and intelligent manufacturing functions to help users reach blow-molding process optimization with stable quality is yet another big challenge.
    To solve the problems mentioned above, this research develops cloud-based Automatic Virtual Metrology (AVM) system and AVM-based cloud run-to-run (R2R) control scheme. Big-data collection of process data and bottle quality data will be conducted for the AVM system to change the offline sampling inspection with metrology delay into online and real-time total inspection. Moreover, the R2R control scheme adopts prediction results and reliance indexes generated by AVM for automatic recipe-adjustment calculation such that the center-of-mass of PET bottles can be adjusted promptly with more than 20 % enhancement.

    摘要 i 誌謝 x 第一章 緒論 1 1.1研究背景 1 1.1.1瓶裝市場的成長及吹瓶需求 1 1.1.2延伸吹氣成型技術 1 1.2研究動機 2 1.2.1二段式吹瓶機生產線上品質監控 2 1.2.2 製程品質及參數最佳化問題 2 1.3研究目的 3 1.3.1 二段式吹瓶機生產線上品質監控問題及解決方案 3 1.3.2 製程品質及參數最佳化問題及解決方案 3 1.4 論文架構 4 第二章 文獻探討 5 2.1全自動虛擬量測介紹 5 2.2基於AVM 之R2R Control 文獻探討 5 2.3 瓶樣品質監控方法文獻探討 6 2.4 吹瓶參數最佳化方法文獻探討 6 第三章 研究方法 7 3.1 研究流程 7 3.2確認需求與目標 8 3.3了解製造流程及生產條件 9 3.3.1加熱箱製程介紹 9 3.3.2吹瓶成型製程介紹 10 3.3.3線上紅外線厚度量測儀器及物料追蹤 12 3.3.4 PET 瓶的品質介紹 12 3.3.5檢驗方法介紹 13 3.4資料收集、分析與尋找重要參數 13 3.4.1實驗說明 13 3.4.2實驗規劃及因子水準設計 14 3.4.3實驗條件及結果 14 3.5 建立AVM預測模型/建立與挑選APC控制器/建立與驗證Process Model 17 3.5.1建立AVM預測模型 17 3.5.2 建立與挑選APC控制器 21 3.5.3 建立與驗證Process Model 22 3.6系統整合與測試 26 3.6.1 系統整合 26 3.6.2 製程能力指標選擇 26 3.6.3模擬參數最佳化 27 3.6.4 系統整合模擬結果 28 3.7進行重複性及防呆條件模擬測試 29 3.7.1 重複性實驗1結果 29 3.7.2 重複性實驗2結果 31 第四章 案例呈現與驗證 33 4.1實際量測之R2R系統驗證 33 4.1.1 實際上線流程圖 34 4.1.2 實際量測R2R系統實驗 35 4.1.3 實際量測優劣評估 35 4.2 基於AVM技術之R2R系統驗證 36 4.2.1 基於AVM技術之R2R系統導入情境 36 4.2.2 基於AVM技術之R2R系統導入效益 37 4.2.3 基於AVM技術之R2R系統實驗結果 38 第五章 結論與未來展望 43 5.1 結論 43 5.2 未來展望 43 參考文獻 44

    [1] Y. Lin, M. Hung, H. Huang, C. Chen, H. Yang, Y. Hsieh and F. Cheng, “Development of advanced manufacturing cloud of things (AMCoT) – A smart manufacturing platform,” in IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1809–1816, Jul. 2017.
    [2] F. Cheng, H. Huang and C. Kao, "Developing an Automatic Virtual Metrology System," in IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1, pp. 181-188, Jan. 2012.
    [3] H.-C. Huang, Y.-C. Lin, M.-H. Hung, C.-C. Tu, F.-T. Cheng, Development of cloud based automatic virtual metrology system for semiconductor industry, Robotic Computer-Integrated Manufacturing, vol. 34, pp.30–43, 2015.
    [4] F.-T. Cheng, C.-A. Kao, C.-F. Chen, W.-H. Tsai, “Tutorial on applying the VM technology for TFT-LCD manufacturing,” in IEEE Trans. Semicond. Manuf., vol.28, no.1,55–69, 2015.
    [5] H. Tieng, H.-C. Yang, M.-H. Hung, and F.-T. Cheng, “A novel virtual metrology scheme for predicting machining precision of machine tools,” in Proc. IEEE Int. Conf. Rob. Autom. (ICRA’13), Karlsruhe, Germany, May 6–10, 2013, pp. 264–269.
    [6] F. Cheng, H. Tieng, H. Yang, H. Huang, Y. Lin, C. Wei and Z. Shieh, “Industry 4.1 for wheel machining automation,” in IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 332–339, Jan. 2016.
    [7] H. Tieng, T. Tsai, C. Chen, H. Yang, J. Huang and F. Cheng, "Automatic Virtual Metrology and Deformation Fusion Scheme for Engine-Case Manufacturing," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 934-941, April 2018.
    [8] F.-T. Cheng and Y.-C. Chiu, “Applying the automatic virtual metrology system to obtain tube-to-tube control in a PECVD tool,” IIE Trans., vol. 45, no. 5, pp. 671–682, Jun. 2013.
    [9] C. Kao, F. Cheng, W. Wu, F. Kong and H. Huang, "Run-to-Run Control Utilizing Virtual Metrology With Reliance Index," in IEEE Transactions on Semiconductor Manufacturing, vol. 26, no. 1, pp. 69-81, Feb. 2013.
    [10] S. Ramli, M. Mustafa, D. Wahab and A. Hussain, "Plastic bottle shape classification using partial erosion-based approach," International Colloquium on Signal Processing & its Applications, pp. 1-4, 2010.
    [11] B. Huang, S. Ma, P. Wang, H. Wang, J. Yang, X. Guo, W. Zhang and H. Wang, “Research and Implementation of Machine Vision Technologies for Empty Bottle Inspection Systems,” International Journal Engineering Science and Technology, vol. 21, no 1, pp. 159-169, 2018.
    [12] X. Zhou, Y. Wang, C. Xiao, Q. Zhu, X. Lu, H. Zhang, J. Ge and H. Zhao, "Automated Visual Inspection of Glass Bottle Bottom With Saliency Detection and Template Matching," IEEE Transactions on Instrumentation and Measurement, pp. 1-15, 2019. DOI : 10.1109/TIM.2018.2886977
    [13] K. Tahboub, I. Rawabdeh, "A design of experiments approach for optimizing an extrusion blow molding process," Journal of Quality in Maintenance Engineering, vol. 10 no. 1, pp.47-54. 2004.
    [14] J.-C. ,Yu, X.-X. , Chen, T.-R. Hung and F. Thibault, "Optimization of Extrusion Blow Molding Processes using Soft Computing and Taguchi’s Method," Journal of Intelligent Manufacturing, vol. 15, pp. 625-634. 2004.
    [15] N. Zhou, J. W. Pierre and J. F. Hauer, "Initial results in power system identification from injected probing signals using a subspace method," IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1296-1302, Aug. 2006.
    [16] I. Kamwa and R. Grondin, "Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems," IEEE Transactions on Power Delivery, vol. 7, no. 2, pp. 789-795, April 1992.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE