簡易檢索 / 詳目顯示

研究生: 林美吟
Lin, Mei-yin
論文名稱: 利用蛋白質體學對受雌激素促進劑調控之MCF-7細胞中之轉錄複合體的研究
Proteomics Study of Estrogen Agonist-Induced Transcriptional Complex in MCF-7 cells
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 雌激素受體雌激素受體應答序列轉錄複合體
外文關鍵詞: PPT, estrogen receptor, transcription complex
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MCF-7細胞是一種普遍的乳癌細胞株,他可因雌激素的刺激而使雌激素受體α和β表現,進而調節基因的轉錄以及細胞增生,然而,荷爾蒙活化的機制仍存在著爭議。我們遂結合化學修飾之探針與蛋白質體學的方法探討MCF-7細胞中由雌激素受體調控的轉錄路徑。利用雌激素應答序列修飾之金奈米粒子探針親和性純化經由具雌激素受體α有專一性的促進劑PPT處理3小時和未處理的MCF-7細胞。實驗結果顯示,液相層析質譜儀鑑定到雌激素受體α和許多轉錄調節因子像是輔助型蛋白、抑制型蛋白、組蛋白去乙醯酶 (HDAC)、熱休克蛋白 (HSP)以及參與在染色體重塑的SWI/SNF蛋白質。基於轉錄路徑分析,發現有許多我們鑑定到的且受到PPT刺激後有顯著變化的蛋白質皆以雌激素受體α和cMyc為中心,形成一個雙中心的作用網絡。我們以PPT誘發不同時間點 (0、0.5、3和24 小時)的實驗,探討雌激素受體α和cMyc的表現以及與雌激素應答序列鍵結的變化。我們更進一步探討雌激素受體α上S118的磷酸化程度,並發現S118的磷酸化會影響基因的轉錄。由西方墨點法的結果得知,PPT的誘發可快速在30分鐘內增加雌激素受體α的表現,同時亦使雌激素受體α上S118的磷酸化程度增加進而引導雌激素受體α入核並與雌激素應答序列鍵結;30分鐘之後,雌激素受體α的表現及其磷酸化的程度以及與雌激素應答序列的鍵結便開始下降,直至24小時,其程度便低於原本狀態。然而,我們發現PPT的誘發使cMyc的表現在3小時後有最明顯的增加。我們也發現cMyc在PPT誘發30分鐘時便開始與雌激素應答序列鍵結,而到了3小時達到最高峰,此時雌激素受體α的鍵結卻開始下降,暗示著cMyc藉由雌激素受體α與雌激素應答序列鍵結,但卻擔任使雌激素應答序列-雌激素受體α鍵結游離的角色,這樣的結論與體外的雌激素應答序列鍵結的實驗相符。此外,雌激素應答序列的冷光實驗也指出cMyc會抑制雌激素應答序列的轉錄。總結,所有的實驗結果指出cMyc扮演著共調節者的角色─抑制雌激素應答序列-雌激素受體α的鍵結以清除雌激素應答序列的複合體或在動態轉錄週期的後面階段扮演輔助型蛋白的角色以減緩轉錄的過程。

    MCF-7 cell, a common breast cancer cell line, expresses estrogen receptor α and β (ERα and ERβ) which regulate gene transcription and cell proliferation but the ligand activation mechanism remains controversial. We conducted a chemical probe coupled proteomics approach to study ER-mediated transcriptional signaling in MCF-7 cells. Using estrogen response element (ERE) functionalized gold nanoparticle (AuNP-ERE) probe for affinity purification from MCF-7 cells under the condition with and without the 3-hour treatment of propyl pyrazole triol (PPT, 10-6 M) which is a specific agonist for ERα. Results indicated that ERα and many transcriptional regulators such as co-activators, co-repressor, histon deacetylases (HDAC), heat shock proteins (HSP) and SWI/SNF proteins involved in chromatin remodeling were identified by liquid chromatography-mass spectrometry (LC-MS) . Based on pathway analyses, ERα and cMyc were found to be two centers of the interaction map constructed by the identified proteins which exhibit significant changes upon PPT treatment. The time course (0, 0.5, 3, and 24 hours) study was then conducted to investigate how ERα and cMyc expression and their binding with ERE vary with PPT treatment. The change of the phosphorylation level on S118 of ERα was also investigated since it is known to affect gene transcription. Using immunoblot method, we showed PPT quickly increased the expression and S118 phosphorylation level of ERα and induced its nuclear translocation and ERE binding in 30 min. Beyond 30 min, the expression and phosphorylation level as well as ERE binding of ERα were decreased to a level below its original state after 24 hours. However, we found PPT increased cMyc expression at a later time: a peak maxima was observed after 3 hours of PPT treatment. We also found cMyc started to bind ERE at 30 min but reached a maxima at 3 hour under which the bound ERα was decreased, implying that cMyc was recruited to ERE through ER but acted to dissociate the ERE-ERα binding. This is in agreement with the in-vitro ERE binding assay. Furthermore, ERE luciferase assay indicated that cMyc represses ERE transcription. Taken together, our results indicate that cMyc acts as a co-regulator that suppresses the binding of ER or coactivators during the later phase of the dynamic transcriptional cycle to clear up the ERE complexes and slow down the transcription.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 序論 1 1.1 乳癌的流行病學1 1 1.2 雌激素簡介 3 1.2.1 雌激素與乳癌的相關性 3 1.2.2 雌激素受體(Estrogen receptor, ER) 4 1.2.2.1 雌激素受體α ( ERα)與雌激素受體β ( ERβ)的比較 4 1.2.2.2 DNA結合區(DNA-binding domain, 簡稱DBD) 6 5 1.2.2.3 荷爾蒙結合區(ligand-binding domain, 簡稱LBD) 4 6 1.2.2.4 雌激素受體促進劑(agonist) ─ PPT (propyl pyrazole triol)11 7 1.2.3 雌激素作用機制 (Estrogen pathway)14 8 1.2.4 蛋白質轉譯後修飾(Post-translational modification, PTM) 10 1.2.5 雌激素受體磷酸化(protein phosphorylation) 11 1.3 蛋白質體學 12 1.3.1 質譜學 13 1.3.2 蛋白質體法 18 1.3.3 多維蛋白質鑑定技術 (Multidimensional Protein Identification Technology)31 22 1.4 奈米科技 23 1.4.1 奈米科技背景簡介 23 1.4.2 金奈米粒子的原理與特性 23 1.4.2.1 表面電漿共振(Surface plasma resonance, SPR)34 24 1.4.2.2 奈米粒子與生物分子的結合(Gold nanoparticle – bio-molecule conjugates) 26 1.4.2.3 DNA-金奈米粒子之應用 27 第二章 目的與動機 30 第三章 實驗 31 3.1 藥品 31 3.1.1 金奈米探針 31 3.1.2 細胞培養與萃取 31 3.2 儀器 32 3.3 奈米金探針的製備 32 3.3.1 金奈米粒子的製備 32 3.3.2 雌激素應答序列修飾之探針(ERE probe)的製備 32 3.4 細胞培養與核萃取 33 3.5 親和性純化試驗 34 3.6 西方墨點法 (Western Blotting) 35 3.7 三氯乙酸蛋白質沉澱法 (Trichloroacetic acid protein precipitation, TCA) 35 3.8 質譜分析之蛋白質樣品前處理 36 3.9 二維液相層析串聯質譜分析(2D-LC-MS) 36 3.10 蛋白質資料處理 37 第四章 結果 38 4.1 PPT處理時間對蛋白表現量之影響 38 4.2 PPT處理時間對蛋白質入核的影響 42 4.3 PPT處理時間對ERE與蛋白質之間作用的影響 49 4.4 蛋白質體與生物資訊分析 54 第五章 討論 69 5-1 ER-ERE轉錄複合體形成之週期 69 5-2 c-Myc 73 5-3 磷酸化ERα 75 第六章 結論 77 第七章 參考文獻 78 附錄一 83 附錄二 84 附錄三 85 附錄四 86

    Chang, K. J.; Kuo, W. H.; Wang, M. Y., The Epidemiology of Breast Cancer in Taiwan. Journal of Cancer Research and Practice 2008, 24 (2), 85-93.
    2. Chen, G. G.; Zeng, Q.; Tse, G. M., Estrogen and its receptors in cancer. Med Res Rev 2008, 28 (6), 954-74.
    3. Ruggiero, R. J.; Likis, F. E., Estrogen: physiology, pharmacology, and formulations for replacement therapy. J Midwifery Womens Health 2002, 47 (3), 130-8.
    4. Nilsson, S.; Makela, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J. A., Mechanisms of estrogen action. Physiol Rev 2001, 81 (4), 1535-65.
    5. Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Strom, A.; Treuter, E.; Warner, M.; Gustafsson, J. A., Estrogen receptors: How do they signal and what are their targets. Physiological Reviews 2007, 87 (3), 905-931.
    6. Ruff, M.; Gangloff, M.; Wurtz, J. M.; Moras, D., Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2000, 2 (5), 353-9.
    7. Moore, J. T.; Collins, J. L.; Pearce, K. H., The nuclear receptor superfamily and drug discovery. ChemMedChem 2006, 1 (5), 504-23.
    8. Delaunay, F.; Pettersson, K.; Tujague, M.; Gustafsson, J. A., Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Molecular Pharmacology 2000, 58 (3), 584-590.
    9. Gee, A. C.; Carlson, K. E.; Martini, P. G. V.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A., Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Molecular Endocrinology 1999, 13 (11), 1912-1923.
    10. Tzukerman, M. T.; Esty, A.; Santiso-Mere, D.; Danielian, P.; Parker, M. G.; Stein, R. B.; Pike, J. W.; McDonnell, D. P., Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Molecular Endocrinology 1994, 8 (1), 21-30.
    11. Stauffer, S. R.; Coletta, C. J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A., Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem 2000, 43 (26), 4934-47.
    12. Fink, B. E.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A., Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. Chem Biol 1999, 6 (4), 205-19.
    13. Lee, G. S.; Kim, H. J.; Jung, Y. W.; Choi, K. C.; Jeung, E. B., Estrogen receptor alpha pathway is involved in the regulation of Calbindin-D9k in the uterus of immature rats. Toxicol Sci 2005, 84 (2), 270-7.
    14. Osborne, C. K.; Schiff, R., Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011, 62, 233-47.
    15. (a) Tarallo, R.; Bamundo, A.; Nassa, G.; Nola, E.; Paris, O.; Ambrosino, C.; Facchiano, A.; Baumann, M.; Nyman, T. A.; Weisz, A., Identification of proteins associated with ligand-activated estrogen receptor alpha in human breast cancer cell nuclei by tandem affinity purification and nano LC-MS/MS. Proteomics 2011, 11 (1), 172-9; (b) Bjornstrom, L.; Sjoberg, M., Mechanisms of estrogen receptor signaling: Convergence of genomic and nongenomic actions on target genes. Molecular Endocrinology 2005, 19 (4), 833-842.
    16. Gottlicher, M.; Heck, S.; Herrlich, P., Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med 1998, 76 (7), 480-9.
    17. (a) Lin, C. Y.; Strom, A.; Li Kong, S.; Kietz, S.; Thomsen, J. S.; Tee, J. B.; Vega, V. B.; Miller, L. D.; Smeds, J.; Bergh, J.; Gustafsson, J. A.; Liu, E. T., Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res 2007, 9 (2), R25; (b) Williams, C.; Edvardsson, K.; Lewandowski, S. A.; Strom, A.; Gustafsson, J. A., A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 2008, 27 (7), 1019-32.
    18. Mann, M.; Jensen, O. N., Proteomic analysis of post-translational modifications. Nat Biotechnol 2003, 21 (3), 255-61.
    19. Atsriku, C.; Britton, D. J.; Held, J. M.; Schilling, B.; Scott, G. K.; Gibson, B. W.; Benz, C. C.; Baldwin, M. A., Systematic mapping of posttranslational modifications in human estrogen receptor-alpha with emphasis on novel phosphorylation sites. Mol Cell Proteomics 2009, 8 (3), 467-80.
    20. Lannigan, D. A., Estrogen receptor phosphorylation. Steroids 2003, 68 (1), 1-9.
    21. Le Goff, P.; Montano, M. M.; Schodin, D. J.; Katzenellenbogen, B. S., Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 1994, 269 (6), 4458-66.
    22. Britton, D. J.; Scott, G. K.; Schilling, B.; Atsriku, C.; Held, J. M.; Gibson, B. W.; Benz, C. C.; Baldwin, M. A., A novel serine phosphorylation site detected in the N-terminal domain of estrogen receptor isolated from human breast cancer cells. J Am Soc Mass Spectrom 2008, 19 (5), 729-40.
    23. Yamashita, H.; Nishio, M.; Toyama, T.; Sugiura, H.; Kondo, N.; Kobayashi, S.; Fujii, Y.; Iwase, H., Low phosphorylation of estrogen receptor alpha (ERalpha) serine 118 and high phosphorylation of ERalpha serine 167 improve survival in ER-positive breast cancer. Endocr Relat Cancer 2008, 15 (3), 755-63.
    24. Liebler, D. C., Introduction to Proteomics: Tools for the New Biology. 2001.
    25. Ouyang, Z.; Wu, G.; Song, Y.; Li, H.; Plass, W. R.; Cooks, R. G., Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal Chem 2004, 76 (16), 4595-605.
    26. Olsen, J. V.; Schwartz, J. C.; Griep-Raming, J.; Nielsen, M. L.; Damoc, E.; Denisov, E.; Lange, O.; Remes, P.; Taylor, D.; Splendore, M.; Wouters, E. R.; Senko, M.; Makarov, A.; Mann, M.; Horning, S., A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 2009, 8 (12), 2759-69.
    27. Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R., The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005, 40 (4), 430-43.
    28. 陳玉如, 特定標的之新藥開發:質譜技術與蛋白質體學 (Mass Spectrometry and Proteomics). 教育部顧問室「生物技術科技人才培育先導型計畫」醫藥基因生物技術教學資源中心 2005, 第一版 (第三章), 21-40.
    29. Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C., Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci U S A 2003, 100 (2), 443-8.
    30. Zhu, W.; Smith, J. W.; Huang, C. M., Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010, 2010, 840518.
    31. Delahunty, C.; Yates, J. R., 3rd, Protein identification using 2D-LC-MS/MS. Methods 2005, 35 (3), 248-55.
    32. (a) Washburn, M. P.; Wolters, D.; Yates, J. R., 3rd, Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001, 19 (3), 242-7; (b) Mauri, P.; Scarpa, A.; Nascimbeni, A. C.; Benazzi, L.; Parmagnani, E.; Mafficini, A.; Della Peruta, M.; Bassi, C.; Miyazaki, K.; Sorio, C., Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 2005, 19 (9), 1125-7.
    33. 丁志明; 方冠榮; 吳季珍; 周維揚; 胡裕民; 翁鴻山; 陳東煌; 傅昭銘; 馮榮豐; 黃榮俊; 黃耀輝; 張鼎張; 劉全璞; 蔡振章; 蕭璦莉; 謝達斌, 奈米科技─基礎、應用與實作. 高立圖書有限公司 2005.
    34. 鄭百喬, 利用定量奈米質譜學來解析與雌激素轉錄行為相關的蛋白質複合體. 國立成功大學化學研究所博士論文 2009.
    35. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-97.
    36. Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W., Building plasmonic nanostructures with DNA. Nat Nanotechnol 2011, 6 (5), 268-76.
    37. Aubin-Tam, M. E.; Hamad-Schifferli, K., Structure and function of nanoparticle-protein conjugates. Biomed Mater 2008, 3 (3), 034001.
    38. (a) Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P., Jr.; Schultz, P. G., Organization of 'nanocrystal molecules' using DNA. Nature 1996, 382 (6592), 609-11; (b) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382 (6592), 607-9.
    39. Zheng, Y.; Sanche, L., Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 2009, 172 (1), 114-9.
    40. Niemeyer, C. M.; Ceyhan, B., DNA-Directed Functionalization of Colloidal Gold with Proteins This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. We thank Prof. D. Blohm for helpful discussions and generous support. Angew Chem Int Ed Engl 2001, 40 (19), 3685-3688.
    41. Xu, S. Q.; Zhao, L. F.; Li, L.; Gao, Y. Q.; Li, B. S.; Li, Y. Y.; Shi, C. H.; Chen, T.; Yang, W. J.; Li, X. B., Densitometry determination of dioxins using gold nanoparticle-modified dioxin response element probes. Gold Bulletin 2007, 40 (4), 305-309.
    42. Cheng, P. C.; Chang, H. K.; Chen, S. H., Quantitative nanoproteomics for protein complexes (QNanoPX) related to estrogen transcriptional action. Mol Cell Proteomics 2010, 9 (2), 209-24.
    43. 張翔凱, 利用QNanoPX的方法結合蛋白質體學及生物資訊來解析與雌激素接受器應答序列相關的轉錄複合體. 國立成功大學 生物資訊研究所 碩士論文 2010.
    44. (a) Acu, I. D.; Liu, T.; Suino-Powell, K.; Mooney, S. M.; D'Assoro, A. B.; Rowland, N.; Muotri, A. R.; Correa, R. G.; Niu, Y.; Kumar, R.; Salisbury, J. L., Coordination of centrosome homeostasis and DNA repair is intact in MCF-7 and disrupted in MDA-MB 231 breast cancer cells. Cancer Res 2010, 70 (8), 3320-8; (b) Nath-Sain, S.; Marignani, P. A., LKB1 catalytic activity contributes to estrogen receptor alpha signaling. Mol Biol Cell 2009, 20 (11), 2785-95.
    45. Ambrosino, C.; Tarallo, R.; Bamundo, A.; Cuomo, D.; Franci, G.; Nassa, G.; Paris, O.; Ravo, M.; Giovane, A.; Zambrano, N.; Lepikhova, T.; Janne, O. A.; Baumann, M.; Nyman, T. A.; Cicatiello, L.; Weisz, A., Identification of a hormone-regulated dynamic nuclear actin network associated with estrogen receptor alpha in human breast cancer cell nuclei. Mol Cell Proteomics 2010, 9 (6), 1352-67.
    46. Shang, Y.; Hu, X.; DiRenzo, J.; Lazar, M. A.; Brown, M., Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000, 103 (6), 843-52.
    47. Fowler, A. M.; Alarid, E. T., Dynamic control of nuclear receptor transcription. Sci STKE 2004, 2004 (256), pe51.
    48. Jung, K. C.; Rhee, H. S.; Park, C. H.; Yang, C. H., Determination of the dissociation constants for recombinant c-Myc, Max, and DNA complexes: the inhibitory effect of linoleic acid on the DNA-binding step. Biochem Biophys Res Commun 2005, 334 (1), 269-75.
    49. Grandori, C.; Cowley, S. M.; James, L. P.; Eisenman, R. N., The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000, 16, 653-99.
    50. Cheng, A. S.; Jin, V. X.; Fan, M.; Smith, L. T.; Liyanarachchi, S.; Yan, P. S.; Leu, Y. W.; Chan, M. W.; Plass, C.; Nephew, K. P.; Davuluri, R. V.; Huang, T. H., Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters. Mol Cell 2006, 21 (3), 393-404.
    51. Musgrove, E. A.; Sergio, C. M.; Loi, S.; Inman, C. K.; Anderson, L. R.; Alles, M. C.; Pinese, M.; Caldon, C. E.; Schutte, J.; Gardiner-Garden, M.; Ormandy, C. J.; McArthur, G.; Butt, A. J.; Sutherland, R. L., Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One 2008, 3 (8), e2987.
    52. Heery, D. M.; Kalkhoven, E.; Hoare, S.; Parker, M. G., A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997, 387 (6634), 733-6.
    53. (a) Varlakhanova, N.; Snyder, C.; Jose, S.; Hahm, J. B.; Privalsky, M. L., Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain. Mol Cell Biol 2010, 30 (6), 1434-45; (b) Hu, X.; Li, Y.; Lazar, M. A., Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol 2001, 21 (5), 1747-58.
    54. Weitsman, G. E.; Li, L.; Skliris, G. P.; Davie, J. R.; Ung, K.; Niu, Y.; Curtis-Snell, L.; Tomes, L.; Watson, P. H.; Murphy, L. C., Estrogen receptor-alpha phosphorylated at Ser118 is present at the promoters of estrogen-regulated genes and is not altered due to HER-2 overexpression. Cancer Res 2006, 66 (20), 10162-70.
    55. Wu, C. J.; Chen, Y. W.; Tai, J. H.; Chen, S. H., Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation. J Proteome Res 2011, 10 (3), 1088-97.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE