| 研究生: |
陳柏翰 Chen, Po-Han |
|---|---|
| 論文名稱: |
利用芒蔗葉經由水解及電透析生產還原糖之前處理研究 Studies on Hydrolysis and Electrodialysis for Pretreatment of Saccharum-Miscanthus Leaves in Reducing Sugar Production |
| 指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 芒蔗 、前處理法 、酸水解 、電透析 、移除率 |
| 外文關鍵詞: | Saccharum-Miscanthus, pretreatment, acid hydrolysis, electrodialysis, removal efficiency |
| 相關次數: | 點閱:156 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗之芒蔗是台糖公司將芒草和甘蔗雜交育種而來的品種,其葉子生成快速且泛纖維素含量高達72.49%,是未來具發展潛力的生質原料。
木質纖維素是地球上蘊藏量最豐富之再生天然資源。木質纖維素可利用高濃度酸在低溫或低濃度酸在高溫水解為單醣,供後續微生物進行醱酵,但是缺點為,1.酸會對容器造成腐蝕,2.酸水解後需用大量鹼性物質調整酸鹼值,3.僅能釋放出50-60%理論值之單醣量,4.酸水解會釋放furfural、5-hydroxymethyl-furfural等不利醱酵的抑制物生成。因此,本實驗探討經前處理之芒蔗葉水解效果,以及電透析回收酸的最適化評估。本實驗提出,在固液比1:5,溫度30 oC的條件下,以4 wt%氫氧化鈉溶液浸泡芒蔗葉6小時,洗淨後的芒蔗葉浸泡在固液比1:5之5 wt%硫酸、1.2大氣壓力、溫度為121oC之條件下酸水解2小時,可得產率0.375 g/g,泛纖維素轉化率53.34 %。考量用電成本與硫酸溶液的回收,本實驗採用電透析程序,其最佳操作電壓梯度為4 V/cm、處理時間為160分鐘之環境,如此處理批次1.5公升所需能量約0.087 kWh,而硫酸回收率可達95 %以上。電透析系統可以將酸有效回收並且重複利用,可大幅降低製作還原糖所需成本。
Saccharum-Miscanthus in the present study is a hybrid of sugarcane and miscanthus from Taiwan Sugar Company. The leaves of the hybrid provide high potential as a biomass for bioenergy production due to its high containing of holocellulose and rapid growth rate.
Lignocellulose is the most abundant renewable nature source in the Earth. Hydrolysis of lignocellulose have been applied for reducing sugar production by using concentrated acid under low temperature or dilute acid under high temperature. However, the shortage are 1.acid will corrode the containers. 2. addition of large amount of alkaline solution is required to adjust pH value. 3. it only releases 50-60 % of the theoretical yield of the reducing sugar. 4. reaction of acid hydrolysis will give byproducts which are inhibitors to the following fermentation process. In this work, we investigated the hydrolysis effect of Saccharum-Miscanthus leaves on pretreatment and electrodialysis for recovery of acid. In the proposed process, Saccharum-Miscanthus leaves were first soaked in 30 oC, 4wt % NaOH solution for 6hr followed by 5 wt% H2SO4 solution hydrolysis for under 121 oC, 1.2 atm for 2 hr. The total reducing sugar yield was 0.375 g/g raw material, conversion of holocellulose was 53.34 %. We evaluated the performance of the electrodialysis process by taking electricity consumption and recovery of acid for reusage into account. The experiment results show that the removal efficiency of separation reaches up to 95 % at the optimal conditions of applied voltage gradient 4 V/cm for 160 min, and the energy consumption is approximately 0.087 kWh for 1.5 L solutions. Electrodialysis could recover acid effectively and reduce operation cost for producing reducing sugar.
[1] 簡宣裕, 張明暉, and 劉禎祺, "木質纖維素產生能源方法之探討," 綠色油田在農業永續發展扮演的角色研討會專刊, vol. 103-114, 2007.
[2] J. Zhang, L. Lin, J. Zhang, and J. Shi, "Efficient conversion of D-glucose into D-sorbitol over MCM-41 supported Ru catalyst prepared by a formaldehyde reduction process," Carbohydrate Research, vol. 346, pp. 1327-1332, 8/16/ 2011.
[3] J. A. Breznak and A. Brune, "Role of microorganisms in the digestion of lignocellulose by termites," Annual review of entomology, vol. 39, pp. 453-487, 1994.
[4] 朱冠穎, "白蟻腸道細菌 Clostridium xylanolyticum Ter3 之分離及其糖化纖維素與產氫活性分析," 2008.
[5] S. Haghighi Mood, A. Hossein Golfeshan, M. Tabatabaei, G. Salehi Jouzani, G. H. Najafi, M. Gholami, et al., "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, vol. 27, pp. 77-93, 11// 2013.
[6] P. Harmsen, W. Huijgen, L. Bermudez, and R. Bakker, Literature review of physical and chemical pretreatment processes for lignocellulosic biomass: Wageningen UR, Food & Biobased Research, 2010.
[7] K. K. Janga, M.-B. Hägg, and S. T. Moe, "Influence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspenwood: a statistical approach," BioResources, vol. 7, 2012.
[8] J. Bidlack, M. Malone, and R. Benson, "Molecular structure and component integration of secondary cell walls in plants," in Proc. Okla. Acad. Sci, 1992, pp. 51-56.
[9] 陳燿煌, "蔗芒屬間雜種(Saccharum-Miscanthus)高貴化遺傳育種之研究," 博士論文, 國立臺灣大學農學院農藝學系, 1993.
[10] Y. Sun and J. Cheng, "Hydrolysis of lignocellulosic materials for ethanol production: a review," Bioresource Technology, vol. 83, pp. 1-11, 5// 2002.
[11] 陳文恆, 郭家倫, 黃文松, and 王嘉寶, "纖維酒精技術之發展," 農業生技產業季刊, vol. 9, pp. 62-69, 2007.
[12] L. Yang, J. Cao, Y. Jin, H.-m. Chang, H. Jameel, R. Phillips, et al., "Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw," Bioresource Technology, vol. 124, pp. 283-291, 11// 2012.
[13] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, "Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review," Bioresource Technology, vol. 101, pp. 4851-4861, 7// 2010.
[14] J. S. Van Dyk and B. I. Pletschke, "A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy," Biotechnology Advances, vol. 30, pp. 1458-1480, 11// 2012.
[15] M. J. Taherzadeh and K. Karimi, "Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review," BioResources, vol. 2, pp. 472-499, 2007.
[16] L. Cadoche and G. D. López, "Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes," Biological Wastes, vol. 30, pp. 153-157, // 1989.
[17] J. Yu and H. Stahl, "Microbial utilization and biopolyester synthesis of bagasse hydrolysates," Bioresource Technology, vol. 99, pp. 8042-8048, 11// 2008.
[18] F. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Łukasik, "Hemicelluloses for fuel ethanol: A review," Bioresource Technology, vol. 101, pp. 4775-4800, 7// 2010.
[19] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, et al., "Features of promising technologies for pretreatment of lignocellulosic biomass," Bioresource Technology, vol. 96, pp. 673-686, 4// 2005.
[20] Ho, W. S. W., and S. K. K., Membrane handbook. Holland: Kluwer Academic Publishers, 2001.
[21] 梁德明, "薄膜相關新技術用於電導度控制技術及處理成本分析," 排放水電導度控制技術講習會, 2003.
[22] V. M. Aponte and G. Colón, "Sodium chloride removal from urine via a six-compartment ED cell for use in Advanced Life Support Systems (Part 2: Limiting current density behavior)," Desalination, vol. 140, pp. 133-144, 11/1/ 2001.
[23] 許慶興, "以電透析法處理鍍鉻及鍍銅廢水," 碩士論文,國立成功大學環工研究所, 1986.
[24] B. G, "Synthetic membrane process," Academic Press Inc, 1984.
[25] V. A. Shaposhnik and K. Kesore, "An early history of electrodialysis with permselective membranes," Journal of Membrane Science, vol. 136, pp. 35-39, 12/10/ 1997.
[26] C. Peng, H. Meng, S. Song, S. Lu, and A. Lopez-Valdivieso, "Secondary potential in electrodialysis membranes and the effect on permselectivity," Journal of Colloid and Interface Science, vol. 273, pp. 256-261, 5/1/ 2004.
[27] Y. Tanaka, "Limiting current density of an ion-exchange membrane and of an electrodialyzer," Journal of Membrane Science, vol. 266, pp. 6-17, 12/1/ 2005.
[28] 楊萬發, 金屬工業廢水回收處理技術: 經濟部工業局, 1994.
[29] E. Korngold, F. de Körösy, R. Rahav, and M. F. Taboch, "Fouling of anionselective membranes in electrodialysis," Desalination, vol. 8, pp. 195-220, 10// 1970.
[30] V. K. Indusekhar and N. Krishnaswamy, "Polarization studies on interpolymer ion exchange membranes," Desalination, vol. 48, pp. 267-279, // 1983.
[31] O. Kedem and I. Rubinstein, "Polarization effects at charged membranes," Desalination, vol. 46, pp. 185-189, 5// 1983.
[32] R. Valerdi-Pérez and J. Ibáñez-Mengual, "Current—voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents," Desalination, vol. 141, pp. 23-37, 12/1/ 2001.
[33] G. Chamoulaud and D. Bélanger, "Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current–voltage curves," Journal of Colloid and Interface Science, vol. 281, pp. 179-187, 1/1/ 2005.
[34] I. Sutzkover, D. Hasson, and R. Semiat, "Simple technique for measuring the concentration polarization level in a reverse osmosis system," Desalination, vol. 131, pp. 117-127, 12/20/ 2000.
[35] V. N. Smagin, N. N. Zhurov, D. A. Yaroshevsky, and O. Y. Yevdokimov, "Optimization of electrodialysis process at elevated temperatures," Desalination, vol. 46, pp. 253-262, 5// 1983.
[36] S. Xutoi and C. Guang, "The calculation of limiting current density of electrodialysis under the influence of water quality and temperature," Desalination, vol. 46, pp. 263-274, 5// 1983.
[37] 林秉旨, "電透析回收銅鐵酸洗廢水中有價金屬," 碩士論文,國立成功大學環工研究所, 1988.
[38] 黃定加, 蔡繁男, 王酸賢, and 莊瑞鑫, "兩性膜電透析法自低濃度醋酸鈉溶液回收濃縮醋酸之質傳研究," 工程科學研究報告, 1982.
[39] 周珊珊, "倒極式電透析薄膜廢水回收技術," 工程技術研究院, 2003.
[40] 張緯立, "以 Pseudomonas aeruginosa S2 利用芒草水解液之還 原糖發酵生產界面活性劑," 成功大學化學工程學系學位論文, pp. 1-63, 2012.
[41] R. Moutta, S. Silva, and G. Rocha, "Optimization of the sugar cane straw hydrolysis conditions aiming the attainment of bioethanol," New Biotechnology, vol. 25, Supplement, p. S258, 9// 2009.
[42] B. C. Saha, "Hemicellulose bioconversion," Journal of Industrial Microbiology and Biotechnology, vol. 30, pp. 279-291, 2003.
[43] E. Bennett, "Preparation of holocellulose from nonwoody plant material," Analytical Chemistry, vol. 19, pp. 215-215, 1947.
[44] B. C. Vidal Jr, B. S. Dien, K. Ting, and V. Singh, "Influence of feedstock particle size on lignocellulose conversion—a review," Applied biochemistry and biotechnology, vol. 164, pp. 1405-1421, 2011.
[45] K. L. Iroba, L. G. Tabil, T. Dumonceaux, and O.-D. Baik, "Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating," Biosystems Engineering, vol. 116, pp. 385-398, 12// 2013.
[46] Q. Xiang, Y. Y. Lee, and R. W. Torget, "Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass," in Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 2004, pp. 1127-1138.