簡易檢索 / 詳目顯示

研究生: 徐傳婷
Hsu, Chuan -Ting
論文名稱: 受束制之移動最小二乘法在Mindlin平板分析之應用
Constrained Moving Least Square Method for the Analysis of Mindlin Plates
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 移動最小二乘法無元素法剪應變形理論
外文關鍵詞: Moving Least Square Method, Element-free Method, Shear Deformation Theory
相關次數: 點閱:175下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用移動最小二乘法(Moving Least Square Method, MLSM)分析Mindlin平板問題。本方法之特點為利用移動最小二乘法建立局部近似函數,在建立同時加入限制條件,使其滿足微分方程式及邊界條件。考慮節點上函數之殘值,建立殘值二次式,並加上限制條件,令為目標函數,由目標函數之最小化,得到以節點上函數值表示之近似函數。利用各節點函數值之一致條件以置點法可建立聯立方程式並求解。數值範例中,分析不同載重、作用力及邊界條件下板的變位、轉角、彎矩和剪力,並與解析解比較檢驗其誤差及收斂率。

    In this thesis, the moving least square method is used to analyze the mechanical problems of Mindlin plates. The novelty of this approach is that, we add constraint into the moving least square approach to establish the approximate function, so that it satisfies both the differential equation and boundary conditions.
    In numerical examples, we analyze the problem to obtain the deflection, rotation, bending moment and shear force of the plates under different loads and boundary conditions, and compare the numerical results with the exact solution to examine the accuracy and the rate of convergence .

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1前言 1 1.2無元素法的發展 2 1.3 本文架構 3 第二章 控制方程式推導 5 2.1 一階剪應變形平板理論 5 2.2 邊界條件 9 2.3 四邊簡支承板受雙正弦載重之解析解 10 2.4多項式解析解 11 第三章 移動最小二乘法之應用 23 3.1 移動最小二乘法 23 3.2 限制條件為微分方程式之最小二乘法 24 3.3 支撐半徑與加權之選取 26 第四章 數值範例分析結果 27 4.1四邊簡支承板受雙正弦載重 27 4.2 多項式解析解比較 28 4.2.1 平板受線性剪力與彎矩為主的作用力 28 4.2.2 平板受線性剪力與彎矩為主的作用力 29 4.2.3 平板受線性荷重與x向剪力為主的作用力 29 4.2.4 平板受二次荷重與x向剪力為主的作用力 30 第五章 結論 32 參考文獻 33

    [1] Kirchhoff, G.(1850), “Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe”, Crelles J. Vol.40, pp.51-58.
    [2 ] Love, A.E.H.(1944), “A Treatise on Mathematical Theory of Elastic”, Dover
    Publication, New York.
    [3] R.D. Mindlin, (1951), “Influence of rotatory inertia and shear on flexural motion of isotropic elastic plates.”J. Appl. Mech.,73, pp.31-38.
    [4] L.B. Lucy(1977), “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, 82, pp.1013-1024.
    [5] B. Nayroles, G. Touzot & P. Villon(1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element”, Computational Mechanics, 10, pp.307-318.
    [6] T. Belytschko, Y. Y. Lu & L. Gu(1944), “Element-Free Galerkin Methods”, International Journal for Numerical Methods in Engineering, 37, pp.229-256.
    [7] Y. Y. Lu, T. Belytschko & L. Gu(1944), “A new implementation of the element free Galerkin method”, Computer methods in Applied Mechanics And Engineering, 113, pp.397-414.
    [8] W. K. Liu, S.Jun & Y.F.Zhang(1995), “Reproducing Kernel Particle Methods”, International Journal for Numerical Methods in Engineering, 20, pp.1081-1106.
    [9] J. S. Chen, C. T. Wu & W. K. Liu(1996), “Reproducing kernel particle methods for large deformation analysis of non-linear structures”, Computer methods in Applied Mechanics And Engineering, 139, 195-227.
    [10] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco(1996), “A stabilized finite point method for analysis of fluid mechanics problems”,
    Computer Methods in Applied Mechanics & Engineering, 139, pp.315-346.
    [11] S. Li, W. Hao, W. K. Liu(2000), “Numerical simulations of large deformation of thin shell structures using meshfree methods”, Computational Mechanics, 25, pp.102-116.
    [12] 盛若磐(2000),元素釋放法積分法則與權函數之改良,近代工程計算論壇論文集,國立中央大學土木系。
    [13] Wang, J., Liew., K. M., Tan, M. J. and S. Rajendran(2002), “Analysis of rectangular laminated composite plates via FSDT meshless method”, J. Mechanical Sciences, 44, pp.1275-1293.
    [14] 鄭志源(2004) ,微分再生核近似法於二維平板挫屈之分析,國立成功大學土木研究所碩士論文。
    [15] Y. Q. Huang, Q. S. Li(2004), “Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method ”, Computer Methods in Applied Mechanics & Engineering, 193, pp.3471-3482.
    [16] 江英良(2006),平板大變形理論分析,國立成功大學土木研究所碩士論文。
    [17] 張祐綱(2010),Hermite Type之移動最小二乘法在板、梁分析上之應用,國立成功大學土木研究所碩士論文。
    [18] L. Zhou & Y. Xiang, “ Vibration analysis of plates by MLS element method ”, American Institute of Physics, 1233, pp.225-230.
    [19] 陳皇甫(2011),齊次基底移動最小二乘法在平板分析上之應用,國立成功大學土木研究所碩士論文。
    [20] 莊皓鈞(2011),移動最小二乘法在平板挫屈分析上之應用,國立成功大學土木研究所碩士論文。
    [21] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl(1996), “An Overview and recent developments”, Computer Methods in Applied Mechanics & Engineering, 139, pp.3-47.
    [22] P. Krysl & T. Belytschko(2001), A library to computer the element free galerkin shape functions, Computer Methods in Applied Mechanics & Engineering, 190, pp.2181-2250.

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE