簡易檢索 / 詳目顯示

研究生: 蔡幸君
Tsai, Sing-Jyun
論文名稱: 結合不同時間無因次化求解方法模擬排氣管流場
A combined time-scaling solution method for simulation of an exhaust pipe
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: 時間無因次化數值模擬排氣管
外文關鍵詞: exhaust tube, time-scaling, simulation
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於引擎的作動行程依序為進氣、壓縮、點火爆炸、排氣,因此連接著引擎的排氣管其內部的氣流具有許多脈衝波,並為高溫的振盪流體。脈衝波的移動速度相當快但是振盪流體與熱傳的過程相當緩慢。本文以數值方法研究考慮熱傳效應與壁摩擦效應的震盪流體。為了快速且準確的計算震盪流體,運用複合時間尺度的方法求解質量守恆式、動量守恆式與能量守恆式。固定引擎轉速下,不加入脈衝波並且考慮熱散逸的穩態排氣氣流,採用其中一種時間無因次變數。此種計算的穩態流場歸類為基本流場包含溫度、流速等。利用計算之後的基本流場,於管口加入爆震波,此時排氣管內非穩態的振盪流體則採用另一種時間無因次變數。

      在數值模擬方面,高階解子建立在五階基本加權不振盪法(5th-order WENO scheme)與四階Runge-Kutta時間積分之上,求解尤拉方程式(Euler equations),並且考慮排氣管截面積的變化、摩擦效應以及熱傳效應。我們發現比較計算的結果與實驗數據,在某些確認點上有良好的結果。此外利用管長以及入口平均流速作時間無因次化,可以快速且準確的計算基本流場;以管長和入口平均聲速作時間無因次化,可以有效率地預期非穩態流之流場。

      Due to the process of fuel ignition and explosion inside a vehicle’s engine, the flow inside the exhaust pipe that connects with the engine is a pulsating high- temperature flow with impulsive waves. The impulsive waves move fast, but the pulsating flow and the process of heat transfer are slow. In this study we numerically investigate the pulsating flow with the effects of heat transfer and wall friction. In order to fast and accurately calculate the pulsating flow, a combined time-scaling method is employed for solving the governing equations of the mass, momentum and energy conservations. A steady exhaust-gas flow under the condition of heat loss without impulsive waves at a fixed engine speed is computed by one dimensionless time variable. The computed steady flow is referred as a basic flow with the temperature and flow velocity information. With the computed basic flow, an unsteady pulsating flow inside the exhaust pipe with an imposed blast wave at the pipe inlet is computed by using another dimensionless time variable.
      
      The high-resolution solver is established by using 5th-order WENO scheme and 4th-order Runge-Kutta method for solving the Euler equations with the source terms of the variation of pipe’s cross-sectional area and the effects of wall friction and heat transfer. We found that the computed results at different engine speeds are compared well with the experimental data at some checking points. Moreover, the time variable normalized by the ratio of the pipe length to the time-average inlet flow velocity is appropriate for fast and accurately acquiring the basic flow, and the time variable normalized by the ratio of the pipe length to the time-average inlet sound speed for efficiently predicting the unsteady flow.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 ⅩⅠ 第一章 緒 論 1 §1.1 簡介 1 §1.2 文獻回顧 2 §1.3 研究動機與方法 3 第二章 物理問題 4 §2.1 物理問題 4 §2.2 實驗量測 4 第三章 數學模式 7 §3.1 物理問題基本假設 7 §3.2 流體統御方程式之積分式和微分式 8 第四章 數值方法 17 §4.1 加權基本不震盪法 17 §4.2 加權基本不震盪法應用於尤拉系統 (Euler systems) 20 §4.3 時間積分 21 §4.4 時間間隔 21 §4.5 初始條件 22 §4.6 邊界條件 22 §4.7 收斂方法 23 第五章 程式驗證 24 §5.0 程式驗證 24 §5.1 熱傳非黏性直管流問題 24 §5.1.1 理論方法求解 25 §5.1.2 數值方法求解 25 §5.2 高速黏性直管流問題 25 §5.2.1 理論方法求解 26 §5.2.2 數值方法求解 26 §5.3 低速黏性直管流問題 27 §5.3.1 理論方法求解 28 §5.3.2 數值方法求解 28 第六章 結果與討論 29 §6.0 數值的結果 29 §6.1 格點的選擇 29 §6.2 基本流場的計算 30 §6.2.1 各轉速熱傳係數與摩擦係數之估算與結果 30 §6.2.2 基本流場的計算結果 31 §6.3 加入爆震波之後的流場 32 §6.4 排氣管流場分析 35 §6.4.1流場質流率分析 35 §6.4.2 Choking 分析 36 第七章 結論 38 參考文獻 40 附圖 41 Appendix ⅩⅢ Appendix A 84 Appendix B 85 Appendix C 86 Appendix D 87 Appendix E 88

    [1] H. Nakamura, I. Asano, M. Adachi and J. Senda, “Analysis of Pulsating Flow Measurement of Engine Exhaust by a Pitot Tube Flowmeter,” Int. J. Engine Res., Vol. 6, No. 1, pp. 85-93, 2005.
    [2] O. Chiavola, “Integrated Modeling of Internal Combustion Engine Intake and Exhaust Systems,” Proc Instn Mech Engrs, Vol. 215, Part A, pp. 498-506, 2001.
    [3] R. S. Wijetung, J. G. Hawley, and N. D. Vaughan, “An Exhaust Pressure Control Strategy for a Diesel Engine,” J. Automobile Engineering, Vol. 218, Part D, pp. 449-464, 2004.
    [4] Y. H. Kweon, H. D. Kim, T. Aoki, and T. Setoguchi, “A Study of the Impulse Waves Discharged from Convergent and Divergent Ducts,” J. Mechanical Engineering Science, Vol. 218, Part C, pp.1469-1479, 2004.
    [5] H. D. Kim, Y. H. Kweon and T. Setoguchi, “A Study of the Impulse Wave Discharged from the Inclined Exit of a Tube,” J. Mechanical Engineering Science, Vol. 217, Part C, pp. 437-448, 2003.
    [6] S. M. Liang, J. S. Wang and H. Chen, “Numerical Study of Spherical Blast-Wave Propagation and Reflection,” Shock Waves, Vol. 12, pp. 59-68, 2002.
    [7] H. Steinrück, W. Schneider and W. Grillhofer, “A Multiple scales Analysis of the Undular Hydraulic Jump in Turbulent Open Channel Flow,” Fluid Dynamics Research, Vol. 33, pp. 41-55, 2003.
    [8] G. Cherng and T.-Y. Na, “Effects of Area Change and Friction on Acoustic Propagation in Compressible Flow through Long Ducts,” Int. J. Non-Linear Mechanics, Vol. 32, No. 5, pp. 979-987, 1997.
    [9] 江興禹,"汽車排氣管之數值模擬與流場分析”,碩士論文,航空太空工程學系,國立成功大學,2004。
    [10] G.-S. Jiang and C.-W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comp. Phys., Vol. 126, pp. 202-228, 1996.
    [11] J. E. A. John, “Gas Dynamics,” Allyn and Bacon, Inc., USA, 1984.
    [12] P. Incropera and P. Dewitt, “Fundamentals of Heat and Mass Transfer,” John Wiley and Sons, Inc., New York, 1996.

    下載圖示 校內:2006-07-21公開
    校外:2006-07-21公開
    QR CODE