簡易檢索 / 詳目顯示

研究生: 林乙強
Lin, Yi-Ciang
論文名稱: 掃描式熱探針微影銀奈米粒子圖形及其表面電漿子共振之即時量測
Real-Time Surface Plasmon Resonance Measurement of Silver Nanoparticles Synthesized by Scanning Thermal Lithography
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 掃描式熱探針微影銀奈米粒子表面電漿共振即時量測
外文關鍵詞: Scanning thermal lithography, silver nanoparticle, surface plasmon resonance, real-time measurement
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以掃描式熱探針微影技術在側磨光纖上定點合成銀奈米粒子,搭配上連接光纖的光譜儀,可在繪製銀奈米粒子圖形的過程中即時量測其表面電漿子共振性質。 將光學級的聚對苯二甲酸乙二醇酯和銀的前趨物-三氟醋酸銀調配出之溶液,利用旋轉塗布的方式在玻片上成膜,並藉由在室溫下的溶劑退火,使得聚對苯二甲酸乙二醇酯薄膜的耐熱性及機械強度提升。製備完成的薄膜將直接被撕下並轉貼上側磨光纖。掃描熱探針技術是利用掃描式探針顯微鏡搭配奈米級的熱探針,可局部加熱以觸發銀前驅物的還原,形成銀奈米粒子。在另一方面,異丙苯過氧化氫,一種過氧化物的高能物質亦被添加至薄膜中,在掃描熱微影過程中能提供額外的熱源。實驗結果顯示高能物質輔助掃描式熱探針微影技術能將聚對苯二甲酸乙二醇酯薄膜內的銀奈米粒子還原溫度降低至200 oC。 在掃描式熱探針微影技術中,於一個加熱點產生的為嵌入並散佈於聚對苯二甲酸乙二醇酯薄膜中的銀奈米粒子叢集。在繪製圖形的過程中,吸收光譜可被連接上側磨光纖的光譜儀即時量測。在二維點陣列的繪製過程中,隨著陣列點間距的縮短,銀奈米粒子的表面電漿共振發生些微紅位移,此現象來自於兩個相鄰的銀奈米粒子叢集間引發的表面電漿子耦合,進而改變其表面電漿子共振特性。 本研究成功展示了即時量測由掃描式熱探針微影技術合成出的銀奈米粒子之表面電漿子性質。在微影過程中,電漿子耦合的發生在即時量測下被完整記錄。

    Surface plasmon resonance (SPR) of silver nanoparticles in-situ synthesized by the scanning thermal lithography (SThL) was monitored in real time via the fiber-based spectrometer. Optical-transparent poly(ethylene terephthalate) (PET) preloaded with silver precursor, silver trifluoroacetate, was spin-coated on a slide, followed by the solvent annealing process to improve the thermal resistance and mechanical strength. Obtained PET layer was cut and transferred to a side-polished optical fiber (SPOF). SThL involved the scanning probe microscope equipped with a nano-scaled thermal probe capable of a localized heating that triggers the silver nanoparticle formation from the precursor. Furthermore, an energetic, cumene hydroperoxide, was added to provide extra joule heat during the SThL. As a result, the energetic-assisted SThL produced and patterned the silver nanoparticles in the PET layer at the temperature as low as 200oC. SThL stamping produced a cluster of silver nanoparticles embedded in the PET layer. During the SThL, the absorption spectra were monitored in real time by a spectrometer connected to the SPOF. A SThL with 2-dimensional array patterns revealed a slight SPR red-shift as the stamping distance was shortened. In such case, two stamping clusters encouraged the SPR coupling that altered the SPR characteristics. This work successfully demonstrated the real time monitoring of SThL-synthesized silver nanoparticles, as well as their SPR profiles during the SThL fabrication with or without plasmonic coupling.

    中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VII List of Illustrations VIII Chapter 1 Introduction 1 1.1 Introduction of plasmonics 1 1.1.1 Surface Plasmon 2 1.1.2 Localized surface plasmon resonance (LSPR) 3 1.1.3 Factors of effecting LSPR 4 1.1.4 Plasmon coupling in assemblies of metallic nanoparticles 6 1.2 Real-time monitoring of LSPR 7 1.2.1 Theory of side-polished optical fibers 7 1.3 Fabrication of metal nanostructures 9 1.3.1 Parallel replication 9 1.3.2 Serial writing 11 1.4 Introduction of scanning probe microscopy (SPM) 15 1.4.1 Scanning tunneling microscopy (STM) 15 1.4.2 Atomic force microscopy (AFM) 16 1.4.3 Scanning thermal lithography (SThM) 17 1.5 Introduction of thermal probe, in-situ thermal analysis, and SThM 20 1.5.1 Micro-scaled thermal probe: Wollaston wire probe 20 1.5.2 Nano-scaled thermal probe: nano-TATM probes 20 1.5.3 The principle of in-situ thermal analysis 22 1.5.4 Theory of scanning thermal microscopy (SThM) 26 1.6 Single-step energetic assisted scanning thermal lithography 27 Chapter 2 Motivation of Research 30 Chapter 3 Experiment 31 3.1 Materials and instruments 31 3.1.1 Materials 31 3.1.2 Instruments 32 3.2 Experiment processes 34 3.2.1 PET/silver precursor/energetics film preparation 35 3.2.2 Preparation of films on side-polished optical fibers (SPOF) 36 3.2.3 Patterning on PET/CF3COOAg/CHP films by SThL 37 3.2.4 Scattering spectra measurement 38 3.2.5 Real-time spectra measurement with a setup based on SPOF 39 3.3 Analysis instruments 40 3.3.1 Scanning probe microscopy (SPM) 40 3.3.2 Spectrometer 40 3.3.3 Dark-field optical microscopy 41 Chapter 4 Results and Discussion 43 4.1 Investigations of spin-coated PET/CHP films 43 4.1.1 In-situ thermal analysis of CHP 43 4.1.2 In-situ thermal analysis of PET/CHP films 45 4.2 Investigations of spin-coated PET/CF3COOAg/CHP films 48 4.2.1 In-situ thermal analysis of PET/ CF3COOAg /CHP films 48 4.2.2 Optical properties of PET/CF3COOAg/CHP films 50 4.2.3 UV-Vis spectra of heated PET/CF3COOAg/CHP films 53 4.3 Patterns fabricated by scanning thermal lithography (SThL) 55 4.3.1 Surface Morphologies of lines patterned by SThL 55 4.3.2 Dark-field optical microscopy images of lines patterned by SThL with nano-scaled thermal probe 61 4.4 Investigations of PET films-covered side-polished optical fibers 64 4.4.1 Optical properties of PET/ CF3COOAg /CHP films transferred onto side-polished optical fibers 64 4.4.2 Absorption spectra of in-situ synthesized silver nanoparticles 66 4.5 Real-time spectra measuring during scanning thermal lithography (SThL) 68 4.5.1 Real-time spectra measuring during in-situ isothermally heating 68 4.5.2 Real-time spectra measuring during array patterning 71 Chapter 5 Conclusion 76 Chapter 6 Reference 77

    1. Huang, D.-A. In-Situ Thermal Analysis and Scanning Thermal Lithography in Micro and Nano Scale. NCKU, 2008.
    2. Mie, G., Articles on the Optical Characteristics of Turbid Tubes, Especially Colloidal Metal Solutions. Ann. Phys.-Berlin 1908, 25 (3), 377-445.
    3. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106 (5), 874-881.
    4. Moskovits, M., Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57 (3), 783-826.
    5. Gramotnev, D. K.; Bozhevolnyi, S. I., Plasmonics Beyond the Diffraction Limit. Nat. Photonics 2010, 4 (2), 83-91.
    6. Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonics for Extreme Light Concentration and Manipulation. Nature Materials 2010, 9 (3), 193-204.
    7. Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L., Plasmonics: The Next Chip-Scale Technology. Mater. Today 2006, 9 (7-8), 20-27.
    8. Zhang, X. P.; Sun, B. Q.; Hodgkiss, J. M.; Friend, R. H., Tunable Ultrafast Optical Switching Via Waveguided Gold Nanowires. Advanced Materials 2008, 20 (23), 4455-4459.
    9. Sederberg, S.; Driedger, D.; Nielsen, M.; Elezzabi, A. Y., Ultrafast All-Optical Switching in a Silicon-Based Plasmonic Nanoring Resonator. Optics Express 2011, 19 (23), 23494-23503.
    10. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712.
    11. Lal, S.; Link, S.; Halas, N. J., Nano-Optics from Sensing to Waveguiding. Nat. Photonics 2007, 1 (11), 641-648.
    12. Hutter, E.; Fendler, J. H., Exploitation of Localized Surface Plasmon Resonance. Advanced Materials 2004, 16 (19), 1685-1706.
    13. Sanders, A. W.; Routenberg, D. A.; Wiley, B. J.; Xia, Y. N.; Dufresne, E. R.; Reed, M. A., Observation of Plasmon Propagation, Redirection, and Fan-out in Silver Nanowires. Nano Letters 2006, 6 (8), 1822-1826.
    14. Hutchison, J. A.; Centeno, S. P.; Odaka, H.; Fukumura, H.; Hofkens, J.; Uji-i, H., Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Letters 2009, 9 (3), 995-1001.
    15. Craig F. Bohren, D. R. H., Absorption and Scattering of Light by Small Particles. Wiley: New York, 1998.
    16. Hulst, V. D., Light Scattering by Small Particles. Courier Dover Publications: New York, 1981.
    17. Yguerabide, J.; Yguerabide, E. E., Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications: I. Theory. Analytical Biochemistry 1998, 262 (2), 137-156.
    18. Creighton, J. A.; Eadon, D. G., Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements. Journal of the Chemical Society, Faraday Transactions 1991, 87 (24), 3881-3891.
    19. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayad, M. A., Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2 (3), 107-118.
    20. Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 2006, 110 (32), 15666-15675.
    21. Hu, M.; Novo, C.; Funston, A.; Wang, H. N.; Staleva, H.; Zou, S. L.; Mulvaney, P.; Xia, Y. N.; Hartland, G. V., Dark-Field Microscopy Studies of Single Metal Nanoparticles: Understanding the Factors That Influence the Linewidth of the Localized Surface Plasmon Resonance. J. Mater. Chem. 2008, 18 (17), 1949-1960.
    22. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 Nm and Comparison of Their Optical Properties. Journal of the American Chemical Society 2010, 132 (32), 11372-11378.
    23. Zeng, J.; Roberts, S.; Xia, Y., Nanocrystal-Based Time–Temperature Indicators. Chemistry – A European Journal 2010, 16 (42), 12559-12563.
    24. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759.
    25. Duval Malinsky, M.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P., Nanosphere Lithography:  Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. The Journal of Physical Chemistry B 2001, 105 (12), 2343-2350.
    26. Jain, P. K.; Huang, W. Y.; El-Sayed, M. A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters 2007, 7 (7), 2080-2088.
    27. Jain, P. K.; El-Sayed, M. A., Plasmonic Coupling in Noble Metal Nanostructures. Chem. Phys. Lett. 2010, 487 (4-6), 153-164.
    28. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters 2000, 84 (20), 4721-4724.
    29. Haynes, C. L.; McFarland, A. D.; Zhao, L. L.; Van Duyne, R. P.; Schatz, G. C.; Gunnarsson, L.; Prikulis, J.; Kasemo, B.; Kall, M., Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays. Journal of Physical Chemistry B 2003, 107 (30), 7337-7342.
    30. Hicks, E. M.; Zou, S.; Schatz, G. C.; Spears, K. G.; Van Duyne, R. P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Käll, M., Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography. Nano Letters 2005, 5 (6), 1065-1070.
    31. Zou, S.; Schatz, G. C., Narrow Plasmonic/Photonic Extinction and Scattering Line Shapes for One and Two Dimensional Silver Nanoparticle Arrays. The Journal of Chemical Physics 2004, 121 (24), 12606-12612.
    32. Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C., What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? Journal of the American Chemical Society 2000, 122 (19), 4640-4650.
    33. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277 (5329), 1078-1081.
    34. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G., Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nature Materials 2003, 2 (4), 229-232.
    35. Maier, S. A.; Kik, P. G.; Atwater, H. A., Optical Pulse Propagation in Metal Nanoparticle Chain Waveguides. Physical Review B 2003, 67 (20), 205402.
    36. Oates, T. W. H.; Christalle, E., Real-Time Spectroscopic Ellipsometry of Silver Nanoparticle Formation in Poly(Vinyl Alcohol) Thin Films. J. Phys. Chem. C 2007, 111 (1), 182-187.
    37. Herrmann, L. O.; Baumberg, J. J., Watching Single Nanoparticles Grow in Real Time through Supercontinuum Spectroscopy. Small 2013, 9 (22), 3743-3747.
    38. Kim, J. H.; Park, J. S.; Kim, M. G., Time-Dependent Change of Hyper-Rayleigh Scattering from Silver Nanoparticle Aggregates Induced by Salt. Chem. Phys. Lett. 2014, 600, 15-20.
    39. Tsao, Y. C.; Tsai, W. H.; Shih, W. C.; Wu, M. S., An in-Situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of Tio2 Thin Films. Sensors 2013, 13 (7), 9513-9521.
    40. Luo, Y. H.; Chen, X. L.; Xu, M. Y.; Ge, J.; Zhang, Y. L.; He, Y. H.; Tang, J. Y.; Yu, J. H.; Zhang, J.; Chen, Z.; Chen, X. D., Spectra Modulated Surface Plasmon Resonance Sensor Based on Side Polished Multi-Mode Optical Fiber. Spectrosc. Spectr. Anal. 2014, 34 (3), 577-581.
    41. Han, Y. Q.; Chen, Z.; Cao, D.; Yu, J. H.; Li, H. Z.; He, X. L.; Zhang, J.; Luo, Y. H.; Lu, H. H.; Tang, J. Y.; Huang, H. K., Side-Polished Fiber as a Sensor for the Determination of Nematic Liquid Crystal Orientation. Sens. Actuator B-Chem. 2014, 196, 663-669.
    42. Tseng, S. M.; Chen, C. L., Side-Polished Fibers. Appl. Optics 1992, 31 (18), 3438-3447.
    43. Arnaud, J. A., Transverse Coupling in Fiber Optics .1. Coupling between Trapped Modes. Bell System Technical Journal 1974, 53 (2), 217-224.
    44. Arnaud, J. A., Transverse Coupling in Fiber Optics .2. Coupling to Mode Sinks. Bell System Technical Journal 1974, 53 (4), 675-696.
    45. Marcuse, D., Electrooptic Coupling between Te and Tm Modes in Anisotropic Slabs. IEEE J. Quantum Electron. 1975, 11 (9), 759-767.
    46. Lamouroux, B.; Morel, P.; Prade, B.; Vinet, J. Y., Evanescent-Field Coupling between a Monomode Fiber and a High-Index Medium of Limited Thickness. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1985, 2 (5), 759-764.
    47. Srituravanich, W.; Fang, N.; Sun, C.; Luo, Q.; Zhang, X., Plasmonic Nanolithography. Nano Letters 2004, 4 (6), 1085-1088.
    48. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint of Sub-25 Nm Vias and Trenches in Polymers. Applied Physics Letters 1995, 67 (21), 3114-3116.
    49. Costner, E. A.; Lin, M. W.; Jen, W. L.; Willson, C. G., Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication. In Annual Review of Materials Research, Annual Reviews: Palo Alto, 2009; Vol. 39, pp 155-180.
    50. Jeong, Y. S.; Park, J.; Lee, B. K.; Ryu, J. H.; Baek, K. H.; Do, L. M., Application of Thermal Initiator for Characteristic Improvements of Polymeric Replica Mold for Uv Nanoimprint Lithography. J. Nanosci. Nanotechnol. 2014, 14 (8), 5932-5936.
    51. Fischer, U. C.; Zingsheim, H. P., Sub-Microscopic Pattern Replication with Visible-Light. Journal of Vacuum Science & Technology 1981, 19 (4), 881-885.
    52. Deckman, H. W.; Dunsmuir, J. H., Natural Lithography. Applied Physics Letters 1982, 41 (4), 377-379.
    53. De Angelis, F.; Gentile, F.; Mecarini, F.; Das, G.; Moretti, M.; Candeloro, P.; Coluccio, M. L.; Cojoc, G.; Accardo, A.; Liberale, C.; Zaccaria, R. P.; Perozziello, G.; Tirinato, L.; Toma, A.; Cuda, G.; Cingolani, R.; Di Fabrizio, E., Breaking the Diffusion Limit with Super-Hydrophobic Delivery of Molecules to Plasmonic Nanofocusing Sers Structures. Nat. Photonics 2011, 5 (11), 683-688.
    54. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-Pen" Nanolithography. Science 1999, 283 (5402), 661-663.
    55. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of Dip-Pen Nanolithography. Nat Nano 2007, 2 (3), 145-155.
    56. Wang, H. T.; Nafday, O. A.; Haaheim, J. R.; Tevaarwerk, E.; Amro, N. A.; Sanedrin, R. G.; Chang, C. Y.; Ren, F.; Pearton, S. J., Toward Conductive Traces: Dip Pen Nanolithography (R) of Silver Nanoparticle-Based Inks. Applied Physics Letters 2008, 93 (14).
    57. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air. Applied Physics Letters 1990, 56 (20), 2001-2003.
    58. Hsu, J.-H.; Lin, C.-Y.; Lin, H.-N., Fabrication of Metallic Nanostructures by Atomic Force Microscopy Nanomachining and Lift-Off Process. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2004, 22 (6), 2768-2771.
    59. Chen, Y.-J.; Hsu, J.-H.; Lin, H.-N., Fabrication of Metal Nanowires by Atomic Force Microscopy Nanoscratching and Lift-Off Process. Nanotechnology 2005, 16 (8), 1112.
    60. Chen, H.-A.; Lin, H.-Y.; Lin, H.-N., Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires. The Journal of Physical Chemistry C 2010, 114 (23), 10359-10364.
    61. Bae, J. H.; Ono, T.; Esashi, M., Scanning Probe with an Integrated Diamond Heater Element for Nanolithography. Applied Physics Letters 2003, 82 (5), 814-816.
    62. King, W. P.; Saxena, S.; Nelson, B. A.; Weeks, B. L.; Pitchimani, R., Nanoscale Thermal Analysis of an Energetic Material. Nano Letters 2006, 6 (9), 2145-2149.
    63. Hua, Y. M.; Saxena, S.; Clifford, H.; King, W. P., Nanoscale Thermal Lithography by Local Polymer Decomposition Using a Heated Atomic Force Microscope Cantilever Tip. Journal of Micro-Nanolithography Mems and Moems 2007, 6 (2).
    64. Hua, Y. M.; King, W. P.; Henderson, C. L., Nanopatterning Materials Using Area Selective Atomic Layer Deposition in Conjunction with Thermochemical Surface Modification Via Heated Afm Cantilever Probe Lithography. Microelectronic Engineering 2008, 85 (5-6), 934-936.
    65. Huang, C.-M. Low-Temperature Scanning Thermal Lithography for Silver Nanoparticle Synthesis and Patterning. NCKU, 2010.
    66. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49, 57.
    67. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., 7 X 7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters 1983, 50, 120.
    68. Hansma, P. K.; Tersoff, J., Scanning Tunneling Microscopy. Journal of Applied Physics 1987, 61 (2), R1-R24.
    69. Binnig, G.; Garcia, N.; Rohrer, H.; Soler, J. M.; Flores, F., Electron-Metal-Surface Interaction Potential with Vacuum Tunneling: Observation of the Image Force. Physical Review B 1984, 30 (8), 4816-4818.
    70. Binnig, G.; Quate, C. F.; Gerber, C., Atomic Force Microscope. Physical Review Letters 1986, 56, 930.
    71. Meyer, E., Atomic Force Microscopy. Progress in Surface Science 1992, 41, 3-3.
    72. Binnig, G.; et al., Atomic Resolution with Atomic Force Microscope. EPL (Europhysics Letters) 1987, 3 (12), 1281.
    73. Oesterschulze, E.; Stopka, M. In Photothermal Imaging by Scanning Thermal Microscopy, Mineapolis, Minnesota (USA), AVS: Mineapolis, Minnesota (USA), 1996; pp 1172-1177.
    74. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M., Micro-Thermal Analysis: Scanning Thermal Microscopy and Localised Thermal Analysis. International Journal of Pharmaceutics 1999, 192 (1), 85-96.
    75. Gmelin, E.; Fischer, R.; Stitzinger, R., Sub-Micrometer Thermal Physics - an Overview on Sthm Techniques. Thermochimica Acta 1998, 310 (1-2), 1-17.
    76. Pylkki, R. J.; Moyer, P. J.; West, P. E., Scanning near-Field Optical Microscopy and Scanning Thermal Microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1994, 33 (6B), 3785-3790.
    77. Nelson, B. A.; King, W. P., Measuring Material Softening with Nanoscale Spatial Resolution Using Heated Silicon Probes. Review of Scientific Instruments 2007, 78 (2).
    78. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J., Localized Thermal Analysis Using a Miniaturized Resistive Probe. Review of Scientific Instruments 1996, 67 (12), 4268-4274.
    79. Yeh, C.-H. Plasmonic Resonances of Silver Nanoparticles Synthesized and Patterned by Scanning Thermal Lithography. NCKU, 2012.
    80. Huang, C. M.; Yeh, C. H.; Chen, L.; Huang, D. A.; Kuo, C. S., Energetic-Assisted Scanning Thermal Lithography for Patterning Silver Nanoparticles in Polymer Films. ACS Appl. Mater. Interfaces 2013, 5 (1), 120-127.
    81. Hammiche, A.; Pollock, H. M.; Song, M.; Hourston, D. J., Sub-Surface Imaging by Scanning Thermal Microscopy. Meas. Sci. Technol. 1996, 7 (2), 142-150.
    82. Szymanska-Chargot, M.; Gruszecka, A.; Smolira, A.; Bederski, K., Mass-Spectrometric Investigations of Silver Clusters. Acta Phys. Pol. A 2011, 120 (6), 1012-1017.
    83. Duh, Y. S.; Kao, C. S.; Hwang, H. H.; Lee, W. W. L., Thermal Decomposition Kinetics of Cumene Hydroperoxide. Process Saf. Environ. Protect. 1998, 76 (B4), 271-276.
    84. Evanoff, D. D.; Chumanov, G., Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem 2005, 6 (7), 1221-1231.
    85. Prikulis, J.; Malinovskis, U.; Poplausks, R.; Apsite, I.; Bergs, G.; Erts, D., Optical Scattering by Dense Disordered Metal Nanoparticle Arrays. Plasmonics 2014, 9 (2), 427-434.
    86. Jain, P. K.; El-Sayed, M. A., Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters 2008, 8 (12), 4347-4352.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE