簡易檢索 / 詳目顯示

研究生: 侯妏汮
Hou, Wen-Chun
論文名稱: 理論探討胺催化α、β不飽和酮的自身Diels-Alder反應
Theoretical studies of the amine-catalyzed self Diels-Alder reactions of α、β-unsaturated ketones
指導教授: 王小萍
Wang, Shiang-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 電子密度泛函理論狄爾士反應不飽和酮
外文關鍵詞: DFT, Diels-Alder, unsaturated ketones
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來密度泛函理論(DFT)所計算出來的親電性以及親核性已經被用來當作反應活化能的重要指標,因此我們藉由DFT來了解到Diels-Alder (DA) 反應的機制。其中文獻利用不同取代基修飾的乙烯和固定的diene分子進行DA反應,發現增加dienophile缺電子的特性,而增加diene多電子特性時可以降低反應的活化能。
      首先利用DFT來計算取代基如何影響分子的最高佔有分子軌域(HOMO)以及最低未佔有分子軌域(LUMO)的能階分布。當乙烯上的取代基具有低的LUMO能階時會壓低乙烯(dienophile)的LUMO,當壓低的程度越大則會增加dienophile的親電性能力。而dienophile的LUMO能階壓低,使得diene分子HOMO能階的電子更容易轉移到dienophile的LUMO能階上面,因此降低了DA反應的活化能。這也解釋到當路易士酸和取代基形成氫鍵的時候會降低DA反應的活化能。
      該研究已發展到取代基具有π type的孤對電子對,結果發現這類的取代基會推高dienophile的HOMO和LUMO能階因此造成DA的反應性變差。但是不穩定的HOMO能階卻能增加diene的親核性能力,因此具有π type孤對電子對的取代基適合取代在diene分子上。
      此結論驗證本篇論文所提到的自身DA反應,烯胺分子{pyrrolidinyl-substituted (E)-buta-1,3-dien-1ylbenzene}可以當作diene以及dienophile,其中pyrrolidine主要是推高HOMO的能階以降低DA反應活化能。並在pyrrolidine上修飾取代基藉此影響分子HOMO和LUMO能階,最後發現結果如預期所想,影響邊界軌域變動的主要原因是取代基的誘導效應。

      In the course of understanding Diels-Alder (DA) reaction mechanism, the global electrophiliciy and empirical nucleophilicity defined within the density functional theory (DFT) have been adopted as reaction indices to account for the relative activation energies found experimentally. These published results are accomplished by DA reactions of a specified diene with substituted ethylene series. One general rule can be summarized by the statement that the increase of the electron-deficiency character of the dienophile, together with the increase of the electron-rich character of diene, would lead to lower activation energy.
      In this work we have first employed DFT calculations to investigate the electronic nature of substituents with the aim to understand how chemical substitution affects the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Substituents having low-LUMO can press down the LUMO of an ethylene derivative (dienophile), which in return increases the magnitude of electrophiliciy of this dienophile. This effect is corresponding to the electron-deficiency argument for the dienophile, which enables the DA reactions to proceed with low activation energies. This also explains the low activation energy found for reaction systems involving hydrogen-bonding formation between the Lewis acid and the substituent.
        The studies have been extended to substituents having pi-type electron lone-pair orbital(s). It is found that those substituents would elevate levels of both HOMO and LUMO of the dienophile, the latter results in un-favored DA reactions.Since the destabilization of HOMO is corresponding to enhance the nucleophilicity, the substitution conducted on a diene would favor the charge transfer from diene to dienophile. In other words, chemical substitution using those substitutents conducted on “dienes” can also make DA reactions fast.This conclusion can be verified by the reported DA reactions, in which enamine {pyrrolidinyl-substituted (E)-buta-1,3-dien-1ylbenzene} was used as diene and dienophile. The role of the pyrrolidine moiety is to elevate the HOMO and enable a favored DA reaction. Effects of chemical substitution, performed on the pyrrolidinyl carbon, on HOMO/LUMO energies have also been investigated. It is found that, as expected, the inductive effects exerted by the substituents prevail.

    摘要….……………………………………..…………………………………I Abstract………………………………..…………………………………… III 致謝………………………………………………………….……………….V 目錄….……………………………………………………………………....VI 表目錄………...……………………………………………. ………………IX 圖目錄..………………………………………………………………………X 第一章 緒論..………………………………………….……………….….…1 第二章 理論背景..…………………………………………...………………2 2-1 研究歷史..………………………...………………….……………….2 2-2 電子系統 …………………………………………….………………5 2-2-1共振(Resonanc…………………..……………….………………5 2-2-2芳香性(Aromaticity) ...………………………….……………….6 2-2-3超共軛(Hyperconjugation)……………………...…………….…6 第三章 計算原理及方法………………………………………………….…8 3-1量子化學計算簡介………………………………………………….. .8 3-2計算原理………………………………………………………………9 3-2-1薛丁格方程式(Schrödinger equation)……..…………………….9 3-2-2 HF(Hartree-Fock)理論方法..……………………………….….10 3-2-3 DFT(Density Functional Theory)理論方法…..…………….….11 3-2-4基底….………………………………………………………....13 3-2-5分裂(split)基底………………………………………………....14 3-2-6極化函數(polarization function) ……………………………....15 3-2-7限定自洽場和非限定自洽場..…………………………………15 3-2-8 天然鍵結軌域(NBO) ………………….……………………...17 3-3 計算方法…………………………………………………………….19 3-3-1選用軟體………………………………………………………..19 3-3-2計算條件..………………………………………………..……..19 3-3-3計算流程………………………………………………………..20 3-3-4計算指令………………………………………………………..21 3-3-5選用基底……………………………..…………………………21 第四章 結果與討論………...……………………………….……………...22 4-1 實驗數據與理論計算數值比較……………………………...……..23 4-2 官能基對HOMO和LUMO的調控…………………………….…30 4-3 烯胺的反應活化能和ΔNmax值的探討…………..…..……….…….53 第五章 結論……………………………………..………………….....……66 參考文獻..……………………………………………………….…………..69 附錄1 各烯胺的最佳化結構與能量…..…………………….……………72 附錄2 自身Diels-Alder 反應產物的最佳化結構與能量……………….74 附錄3 各烯胺分子的最佳化結構與能量..………………………………76 附錄4 各烯胺分子最佳化結構的電子雲分布..………………………….80 附錄5 烯胺分子和乙烯的Diels-Alder反應的位能曲線圖……….……..88 附錄6 烯胺分子和丁二烯的Diels-Alder反應的位能曲線圖...…………92 表目錄 表1產物和過渡態最穩定的能量…………………………………………..26 表2實驗數據和理論計算所得的數據…………………………………….26 表3不飽和酮和胺類的鍵結能…………………………………………….33 表4推電子基的烯胺類能量和能階的整理數據………………………….34 表5拉電子基的烯胺類能量和能階的整理數據………………………….36 表6原子軌域對烯胺MO能階的貢獻度………………………………...…38 表7-1分子中每個鍵Donor-Acceptor關係………….…………………….39 表7-2取代基為推電子基的NBO分析………………………………….....40 表8-1分子中每個鍵Donor-Acceptor關係………….……………………..45 表8-2取代基為拉電子基的NBO分析……………….……………………47 表9烯胺分子的μ、η、ΔNmax和ω分析……………………………….…….54 表10 各取代基的LUMO能階和反應活化能……………………………..55 表11各取代基的NBO分析………………………………………………...57 表12四氫吡咯催化的烯胺分子正、逆反應活化能以及產物能量………58 表13烯胺和乙烯反應的活化能、逆反應活化能和產物的能量………….60 表14烯胺和1,3-丁二烯反應的活化能、逆反應活化能和產物的能量….63 圖目錄 圖1 (a)[4+2]的Diels-Alder反應……………………………………..………2 (b) [2+2] 的Diels-Alder反應…………………………………………...3 圖2 Diels-Alder反應的化學方程式…………………………………………4 圖3共軛二烯…………………………………………………………………5 圖4 (a)超共軛軌域圖(b)負超共軛軌域圖…………………………………..7 圖5烯胺合成機制………………………………………...………………...23 圖6烯胺類的自身Diels-Alder反應機制………………………………….24 圖7雜環的合成機制………………………………………………………..25 圖8烯胺分子相對的反應速率……………………………………………..28 圖9取代基對分子軌域的影響示意圖……………………………….…….30 圖10 (a) R=Ph 的LUMO電子雲分布圖..…………………………………31 (b)R=Ph 的HOMO電子雲分布圖….………………………………...31 圖11乙烯和1,3-丁二烯以及各烯胺分子的HOMO和LUMO能階…….34 圖12苯環上電子共振至硼上空的p軌域示意圖………………………….37 圖13-CH3和Complex的MO圖………………………………………….42 圖14-NH2和Complex的MO圖……….………………………………..43 圖15-OH和Complex的MO圖……….………….……………………….44 圖16-OCH3和Complex的MO圖…….………….…………………..….45 圖17-F和Complex的MO圖…….………….…………………………….49 圖18-CF3和Complex的MO圖.………….……………………………...50 圖19-NO2和Complex的MO圖……………………………………….….51 圖20-BH2和Complex的MO圖……………………………………….….52 圖21 Diels-Alder反應……………………………………………..…….…55 圖22分子的LUMO能階對反應活化能作圖(無C=NMe2+)………………56 圖23烯胺分子和乙烯反應的碳位置…………………….………………...59 圖24烯胺分子和1,3-丁二烯反應的碳位置…………………………62

    1. Ramachary, D. B.; Chowdari N. S.; Barbas C. F. Tetrahedron Lett. 2002, 43, 6743.
    2. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458.
    3. Betancort, J. M., Sakthivel, K.; Thayumanavan, R.; Barbas, C. F. Tetrahedron Lett. 2001, 42, 4441.
    4. Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas, C. F. Tetrahedron Lett. 2002, 43, 3817.
    5. Jones, M. Organic Chemistry 2nd ed.;W. W. Norton Company Inc.: New York, 2000.
    6. Schleyer, P. V. R. Chem. Rev. 2001, 101, 1115.
    7. Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. V. R. J. Org. Chem. 2002, 67, 1333.
    8. Flygare, W. H. Chem. Rev. 1974, 74, 653.
    9. Feynman, R. P. Phys. Rev. 1939, 56, 340.
    10. Mulliken, R. S. J. Phys. Chem. 1933, 1, 492.
    11. Mulliken, R. S. J. Phys. Chem. 1935, 3, 517.
    12. Mulliken, R. S. J. Phys. Chem. 1937, 7, 339.
    13. Schleyer, P. V. R.; Kos, A. J. Tetrahedron 1983, 39, 1141.
    14. Wheland, G. W. J. Phys. Chem. 1934, 2, 474.
    15. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
    16. Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Phys. Chem. 1968, 49, 2592.
    17. Hoyland, J. R. J. Am. Chem. Soc. 1968, 90, 2227.
    18. Goodman, L.; Gu, H. J. J. Phys. Chem. 1998, 109, 72.
    19. Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
    20. Goodman, L.; Gu, H. J.; Pophristic, V. J. Phys. Chem. 1999, 110, 4268.
    21. Pophristic, V.; Goodman, L. Nature 2001, 411, 565.
    22. Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142.
    23. Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
    24. Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852.
    25. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
    26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    27. Becke, A. D. Phys. Rev. 1988, A38, 3098.
    28. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785.
    29. Goodman, L.; Buchhold, K.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
    30. Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560.
    31. Parr, R. G.; Szentpa´ly, L. V.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922.
    32. Hawkins, J. M.; Nambu, M.; Loren, S. Org. Lett. 2003, 5, No. 23.
    33. Aznar, F.; Garcia, A. B.; Cabal, M. P. Adv. Synth. Catal. 2006, 348, 2443.
    34. Xia, Y.; Yin, D.; Rong, C. Y.; Xu, Q.; Yin, D. H.; Liu, S. B. J. Phys. Chem. A 2008, 112, 9970.
    35. Li, X. M.; Wang, B.; Zhang, J. M.; Yan, M. Org. Lett. 2011, 13, No. 3.
    36. Jorgensen, W. L.; Lim, D.; Blake, J. F. J. Am. Chem. Soc. 1993, 115, 2936.
    37. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
    38. Su, W. L.; Wang, C. C.; Wang, S. P. J. Chinese. Chem. Soc. 2012, 59, 1385.
    39. Domingo, L. R.; Sáez, J. A. Org. Biomol. Chem. 2009, 7, 3576.

    下載圖示 校內:2018-07-01公開
    校外:2018-07-01公開
    QR CODE