簡易檢索 / 詳目顯示

研究生: 蘇育賢
Su, Yu-Sian
論文名稱: 虛擬實境於形狀記憶合金高分子夾持系統之發展
Development of Shape-Memory-Alloy Actuated Polymer Micro-Gripper in Virtual Reality
指導教授: 張仁宗
Chang, R.-J.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 67
中文關鍵詞: 微夾持器虛擬實境影像識別
外文關鍵詞: virtual reality, image identification, micro-gripper
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用「光機電系統控制實驗室」歷年研究發展之微夾持器與形狀記憶合金致動器進行設計改良與微小化,搭配光學顯微鏡、機械臂與影像視覺系統整合成微夾持系統。
      影像系統部份運用圖形搜尋方式,求得玻璃粒子與夾持器位置,並利用虛擬實境的技術重建場景,作為輔助使用者的人機介面。最後經過測試,可夾持與搬運20~40μm之玻璃粒子,完成微夾持系統之設計。

      In this thesis, the size of micro-compliant gripper and SMA actuator developed by “Opto-Mechatronic System Control Laboratory” has been reduced and redesigned. By integrating optical microscope, manipulator, and image acquisition system to the previous parts, then it becomes a micro-manipulator system.
      In image acquisition system, the feature patterns of image are acquired by the pattern matching method to get geometric center and spot of gripping. Then the virtual scene is constructed for human machine interface. Finally, in our test, the gripper can grasp the sphere particle with diameter 20~40μm.

    中文摘要I ABSTRACTII 誌謝III 目錄VI 圖目錄X 表目錄XI 符號表XIII 第一章 緒論1 1-1前言1 1-2文獻回顧1 1-2.1微操縱系統1 1-3研究目標7 1-4研究方法7 1-5論文架構8 第二章 系統硬體架構與軟體設計9 2-1 微操縱系統9 2-1.1 微夾持器改良設計9 2-1.2 致動器設計10 2-1.3 微夾持器與致動器之組裝12 2-1.4 機械臂控制13 2-1.5形狀記憶合金致動器控制電路設計13 2-2 軟體設計16 2-2.1 圖形介面控制程式設計16 2-2.2 影像處理17 2-2.3 電腦圖學模擬17 第三章 影像系統設計19 3-1影像系統架構19 3-1.1 影像系統解析度校準21 3-1.2 機械臂座標校準23 3-1.3 座標軸分析25 3-2 影像處理26 3-2.1 夾持器位置估測26 3-2.2 微粒子參數估測28 3-3 Z軸估測30 3-3.1 聚焦分析30 3-3.2 深度估測32 3-4 影像識別對系統之影響34 3-4.1 影像識別誤差34 第四章 虛擬場景之建構36 4-1 OpenGL應用程式介面36 4-2 STL資料結構37 4-3 CSG結構40 4-4 程式實作42 4-4.1 Stencil緩衝區42 4-4.2 利用Stencil緩衝區實現CSG模型43 4-5 場景環境設定45 4-5.1 夾持器運動分析46 4-5.2 粒子運動分析48 第五章 系統整合與實現50 5-1 夾持系統結構50 5-1.1 夾持器定位校準50 5-2 夾持操縱流程模擬與規劃51 5-3夾持測試55 5-3.1 測試環境設定55 5-3.2 物件夾持測試56 第六章 結論與未來展望60 6-1 結論60 6-2 未來展望60 參考文獻62 附錄65 自述67

    1. D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscope,” Nature, vol. 344, pp. 524-526, 1990.
    2. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Cellota, “Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope,” Science, vol. 251, pp. 1206-1210, 1991.
    3. I. W. Lyo and P. Avouris, “Field-induced nanometer-scale to atomic-scale manipulation of silicon surface with the STM,” Science, vol. 253, pp. 173-176, 1991.
    4. G. Dujardin, R. E. Walkup, and P. Avouris, “Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope,” Science, vol. 255, pp. 1232-1235, 1992.
    5. M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface,” Science, vol. 262, pp. 218-220, 1993.
    6. T. –C. Shen, C. Wang, and G. C. Abeln, “Atomic-scale desorption through electronic and vibrational-excitation mechanisms,” Science, vol. 268, pp. 1590-1592, 1995.
    7. M. T. Cuberes, R. R. Schittler, and J. K. Gimzewski, “Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device,” Phys. Lett., vol. 69, pp. 3016-3018, 1996.
    8. H. J. Lee, and W. Ho, “Single-bond formation and characterization with a scanning tunneling microscope,” Science, vol. 286, pp. 1719-1722, 1999.
    9. T. Yamamoto, O. Kurosawa, and H. Kabata, “Molecular surgery of DNA based on electrostatic micromanipulation,” IEEE, 2000.
    10. C. Haber, and D. Wirtz, “Magnetic tweezers for DNA micromanipulation,” Rev. Sci. Instrum., 2000.
    11. R. L. Hollis, S. Salcudean, and D. W. Abraham, “Toward a tele-nanorobotic manipulation system with atomic scale force feedback and motion resolution,” IEEE, pp. 115-119, 1990.
    12. A. Sulzmann, and J. Jacot, “3D computer graphics based interface to real microscope world for μ-robot telemanipulation and position control,” IEEE, pp. 286-291, 1995.
    13. A. Sulzmann, J.-M. Breguet, and J. Jacot, “Micromotor assembly using high accurate optical vision feedback for microrobot relative 3D displacement in submicron range,” IEEE, pp. 279-282, 1997.
    14. M. Sitti, and H. Hashimoto, “Two-dimensional fine particle positioning using a piezoresistive cantilever as micro / nano-manipulator,” IEEE, pp. 2729-2735, 1999.
    15. M. Guthold, M. R. Falvo, and W. Garrett Matthews, “Controlled manipulation of molecular samples with the nanomanipulator,” IEEE, 2000.
    16. F. Arai, T. Sugiyama, and P. Luangiarmekorn, “3D viewpoint selection and bilateral control for bio-micromanipulation,” IEEE, pp. 189-198, 2000.
    17. F. Arai, A. Kawaji, and P. Luangiarmekorn, “Three-dimensional bio-micromanipulation under the microscope,” IEEE, pp. 604-609, 2001.
    18. A. Kawaji, F. Arai, and T. Fukuda, “3D attitude control system for bio-micromanipulation,” IEEE, pp. 197-202, 2001.
    19. F. Arai and T. Fukuda, “Micro tri-axial force sensor for 3D bio-micromanipulation”, IEEE, vol. 4, pp. 2744-2749, 1999.
    20. M. Sitti, B. Aruk, and H. Shintani, “Development of a scaled teleoperation system for nano scale interaction and manipulation,” IEEE, pp. 860- 867, 2001.
    21. B. Kim, H. Kang, and D.–H. Kim, “Flexible microassembly system based on hybrid manipulation scheme,” IEEE, pp. 2061-2066, 2003
    22. 張景堯,“形狀記憶合金驅動高分子微夾持系統之發展”,國立成功大學機械工程學系論文,中華民國九十二年。
    23. 蘇竣雄,“微細物件遙控與自動控制組裝系統之發展”,國立成功大學機械工程學系論文,中華民國九十二年。
    24. 李文政,“遠端監控微撓性機械夾持系統之研究”,國立成功大學機械工程學系論文,中華民國九十一年。
    25. 陳泰成,“微組裝系統影像伺服建模與測試”,國立成功大學機械工程學系論文,中華民國九十一年。
    26. M. Sonka, V. Hlavac, and R. Boyle, Image processing, Analysis, and Machine vision, PWS, 1998.
    27. R. S. Wright, and M. Sweet, Opengl supper bible, Waite Group Press, 2000.
    28. T. F. Wiegand, “Interactive rendering of CSG models,” Eurographics, vol. 15, pp. 249-261, 1997.

    下載圖示 校內:2005-08-03公開
    校外:2005-08-03公開
    QR CODE