簡易檢索 / 詳目顯示

研究生: 吳沛翰
Wu, Pei-Han
論文名稱: 結合奈米壓印技術與背向式曝光製作雙層互補金屬結構
Nano-Imprinting Lithography in Conjunction with Back-side Photolithography to Fabricate Bi-layer Complementary Metal Structure
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 126
中文關鍵詞: 奈米壓印製程金屬舉離製程背向式曝光雙層互補式金屬結構
外文關鍵詞: Nanoimprint lithography, Lift-off process, Backside exposure, Bi-layer complementary metal structures
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展一種利用奈米壓印技術搭配背向式曝光的製程,在石英基板上製作出雙層且圖案為互補的次微米金屬結構,並解決過去所發表的文獻中遇到的製程瓶頸,包含了使用電子束微影技術使得製程速度較慢、元件面積較小,使用電子束蒸鍍使光阻結構側壁沾附金屬等。同時以實驗探討將此製程應用於製作雙層互補式電漿子超穎表面 (Plasmonic meta-surfaces) 的可能性。
    在本研究的實驗中,會以次微米等級的直線光柵 (Linear grating) 結構之模具進行熱壓成形奈米壓印,搭配後續製程於石英基板上定義出金屬圖案,之後覆蓋上一層二氧化矽之平坦化介電層,再利用此金屬層作為光罩,以背向式曝光的方法,對上層光阻進行曝光。本論文探討曝光參數、曝光距離、金屬圖形對於光阻形貌的影響,最後找出最佳的製程參數與實驗方法,並以此在介電層上定義出第二層金屬的圖案,完成雙層金屬結構。
    在實際的應用方面,將利用本研究所開發的製程,製作出文獻中所設計的非對稱光傳輸元件結構,並利用光譜儀對樣品進行量測,最後與文獻中的光學效果進行比對與驗證。

    This study aims at developing a nanofabrication process using nanoimprint lithography (NIL) along with backside exposure to fabricate bi-layer complementary sub-micron metal structures on a quartz substrate. The main objective is to overcome several processing limitations reported in previous literature, which include slow fabrication speed and smaller device area due to the use of electron beam lithography, as well as metal adhesion on the resist structure sidewalls when employing electron beam evaporation. Additionally, the feasibility of applying this process to fabricate bi-layer complementary plasmonic meta-surfaces will be investigated through experiments.
    In the experimental setup, standard nanoimprint lithography will be conducted using a sub-micron linear grating mold to define the metal pattern on a quartz substrate. A flat silica layer will be deposited as a planarizing dielectric layer, and the metal layer will serve as the mask for backside exposure of the top resist layer. Various exposure parameters, exposure distances, and metal patterns will be investigated to determine their impact on the resist morphology. The optimized process parameters and experimental approaches will be used to define the second-layer metal pattern on the dielectric layer, which completes the bi-layer metal structure.
    For practical applications, the developed process will be utilized to fabricate a designed asymmetric light transmission device reported earlier in the literature. The fabricated samples will be characterized using optical spectrometer and the optical effects will be compared and validated against those reported in the literature.

    摘要 I Abstract II 謝誌 XXIV 目錄 XXV 圖目錄 XXVIII 表目錄 XXXIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 超穎表面簡介與製程瓶頸 2 1.2.2 奈米壓印技術 9 1.2.3背向式曝光製程應用 14 1.3 研究動機與目的 18 1.4論文架構 21 第二章 奈米壓印系統與實驗架構 22 2.1 奈米壓印系統介紹 22 2.2 奈米壓印製程前處理 25 2.2.1 基板與矽母模仁的清潔 25 2.2.2 矽母模仁表面處理製程 28 2.3 犧牲層奈米壓印模仁 33 2.3.1 奈米壓印技術瓶頸 33 2.3.2 犧牲層材料回顧 35 2.3.3 複合式犧牲層可撓性模仁製作 37 第三章 奈米壓印與背向式曝光實驗 45 3.1 實驗機台介紹 47 3.2 奈米壓印實驗流程 55 3.2.1 壓印母模仁 55 3.2.2 壓印阻劑選用 60 3.2.3 奈米壓印實驗步驟 62 3.2.4 壓印結果量測 65 3.2.5 金屬舉離結果 74 3.3 背向式曝光實驗流程 77 3.3.1 介電層選用 79 3.3.2 光阻選用與稀釋 82 3.3.3 曝光光源與量測 85 3.3.4 改變曝光劑量對光阻型貌之影響 90 3.3.5 改變曝光距離對光阻型貌之影響 95 3.3.6 不同曝光圖形對光阻型貌之影響 100 第四章 製程應用-非對稱光傳輸元件製作與量測 106 4.1 樣品製作與量測 108 4.2 樣品光學量測結果 116 第五章 結論與未來展望 118 5.1結論 118 5.2 未來展望 120 參考文獻 122

    [1] M. L. Tseng, Y. Jahani, A. Leitis, and H. Altug, “Dielectric meta-surfaces enabling advanced optical biosensors,” ACS Photonics, vol. 8, pp. 47-60, 2021.
    [2] C. Zhou et al., “Multifunctional beam manipulation at telecommunication wavelengths enabled by an all-dielectric meta-surface doublet,” Adv. Opt. Mater., vol.8, 2020.
    [3] M. Khorasaninejad, et al., “Polarization-insensitive meta-lenses at visible wavelengths,” Nano Lett., vol. 16, pp. 7229-7234, 2016.
    [4] Y. M. Yang et al., “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett., vol. 14, pp. 1394-1399, 2014.
    [5] H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using meta-surface,” IEEE Trans. Antennas Propag., vol. 61, pp. 4615- 4623, 2013.
    [6] H. H. Hsiao, C. H. Chu, and D. P. Tsai. “Fundamentals and applications of metasurfaces,” Small Methods, vol. 1, 2017.
    [7] K. L. KeIIy, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of Size, shape and dielectric environment,” J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
    [8] L. Zhang, T. Koschny, and C. M. Soukoulis, “Creating double negative index materials using the Babinet principle with one meta-surface,” Physical Review B, vol. 87, 2013.
    [9] H. Li, B. Fang, C. Chen, S. Zhu, and T. Li, “Cavity-enhanced metallic meta-lens with improved Efficiency,” Sci. Rep., vol. 10, 2020.
    [10] F. Qin et al. “Hybrid bilayer plasmonic meta-surface efficiently manipulates visible light,” Sci. Adv., vol. 2, 2016.
    [11] J. Zhang et al., “Plasmonic meta-surfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl., vol. 8, 2019.
    [12] W. Liu et al., “Dual band asymmetric optical transmission of both linearly and circularly polarized waves using bilayer coupled complementary chiral meta-surface,” Opt. Express, vol. 27, pp. 33399-33411, 2019.
    [13] G. Behera, P. Mandal, and S. A. Ramakrishna, “Complementary layer pairs of plasmonic ladder-like structured films: Fabrication and visible-near-infrared properties,” J. Appl. Phys., vol. 118, no. 6, 2015.
    [14] G. E. Akinoglu, and J. A. Hutchison, “Perspective-quasi-babinet comple-mentary plasmonic templates: A platform to perform spectroelec-trochemistry,” ECS J. Solid State Sci. Technol, vol. 10, 2021.
    [15] A. Hassanfiroozi, Z.-S. Yang, S. -H. Huang, W. -H. Cheng, Y. Shi, and P. C Wu., “Vertically-stacked discrete plasmonic meta-gratings for broadband space-variant meta-surfaces,” Adv. Opt. Mater., vol. 18, 2023.
    [16] S. Y. Chou, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 14, no. 6, pp. 4129-4133, 1996.
    [17] M. Colburn et al., “Step and flash imprint lithography: a new approach to high-resolution patterning,” SPIE, vol. 3676, pp. 379-389, 1999.
    [18] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides., “Nonphotolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
    [19] Y. C. Lee, and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng., vol. 18, no. 7, 2008.
    [20] T. Hyodo, and F. Morita, S. NAKA, H. Okada, and H. Onnagawa, “Self-aligned organic field-effect transistors using back-surface exposure method,” Jpn. J. Appl. Phys., vol. 43, no.4B, pp. 2323-2325, 2004.
    [21] U. Palfinger, et al., “Fabrication of n- and p-type organic thin film Transistors with minimized gate overlaps by self-aligned nanoimprinting” Adv. Mater., vol. 22, pp. 5115-5119, 2010.
    [22] W, Zhang, S. Y. Chou, “Multilevel nanoimprint lithography with submicron alignment” Appl. Phys. Lett. vol.79, pp. 845-847, 2001.
    [23] S. Li et al., “High-performance asymmetric optical transmission based on coupled complementary subwavelength gratings” Sci. Rep., vol. 9, 2019.
    [24] 杜珮綺, “奈米壓印暨黑光阻嵌入式軟性光罩之微奈米製程與應用,” 國立成功大學機械工程學系碩士論文, 2019.
    [25] 朱致緯, “奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測,” 國立成功大學機械工程學系碩士論文, 2019.
    [26] M. Beck et al., “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng., vol. 61-62, pp. 441-448, 2002.
    [27] 陳維紳, “新型奈米壓印製程結合金屬輔助化學蝕刻應用於製作奈米結構,” 國立成功大學機械工程學系碩士論文, 2022.
    [28] N. Chidambaram, R. Kirchner, M. Altana, and H. Schift, “High fidelity 3D thermal nanoimprint with UV curable polydimethyl siloxane stamps,” J. Vac. Sci. Technol. B, vol. 34, no .6, p. 401, 2016.
    [29] 陳宥翔, “可控制壓力分佈的奈米壓印技術與軟性光罩的曲面黃光微影製程,” 國立成功大學機械工程學系碩士論文, 2020.
    [30] C. D. Schaper, “Water-soluble polymer templates for high-resolution pattern formation and materials transfer printing,” J. Microlithogr., Microfabr., Mcrosyst., vol. 3, pp. 174-185, 2004.
    [31] C. D. Schaper, “Planarizing surface topography by polymer adhesion to water-soluble templates with replicated null pattern,” Langmuir, vol. 20, no.1, pp. 227-231, 2004.
    [32] K. I. Nakamatsu, K. Tone, T. Ohtake, H. Tabata, and S. Matsui, “Nanoimprint and lift-off process using poly (vinyl alcohol),” Jpn. J. Appl. Phys., vol. 44, no. 11, pp. 8186-8188, 2005.
    [33] T. Ohtake, K. -I. Nakamatsu, S. Matsui, H. Tabata, and T. Kawai, “DNA nanopatterning with self-organization by using nanoimprint,” J. Vac. Sci. Technol. B, vol. 66, pp. 3275-3278, 2004.
    [34] Micro Resist Technology,“ mr-I 7000R Series:thermoplastic polymer for nanoimprint lithography with optimized release properties,” mr-I 7000R series data sheet, 2020.
    [35] Micro Resist Technology,“mr-I 7000 thermoplastic polymer for nanoimprint lithography,” mr-I 7000R series data sheet, 2020.
    [36] Desert Silicon,“ Spin-on Glass NDG-2000,” SOG data sheet.
    [37] D. Steffen, “The next generation of maskless lithography,” Proc. of SPIE, vol. 9761, 2016.
    [38] Micro Chemicals,“ AZ-1500-Series,” AZ-1500 data sheet.
    [39] J. Hwang et al., “Fabry-perot cavity resonance enabling highly polarization-sensitive double-layer gold grating,” Sci. Rep., vol. 8, p. 14787, 2018.
    [40] Y. Zhou, I. I. Kravchenko, H. Wang, H. Zheng, G. Gu, and J. Valentine “Multifunctional meta-optics based on bilayer meta-surfaces,” Light Sci. Appl., vol. 8, p. 80, 2018.
    [41] Y. Zhou et al., “Multilayer noninteracting dielectric meta-surfaces for multiwavelength meta-optics,” Nano Lett., vol. 18, pp. 7529−7537, 2018.
    [42] Z. Li et al., “A bilayer plasmonic meta-surface for polarization-insensitive bidirectional perfect absorption,” Adv. Theory Simul., vol. 3, p. 1900216, 2020.
    [43] R. Sarma et al., “An all-dielectric polaritonic meta-surface with a giant nonlinear optical response,” Nano Lett., vol. 22, pp. 896-903, 2022.

    無法下載圖示 校內:2028-08-20公開
    校外:2028-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE