簡易檢索 / 詳目顯示

研究生: 游振祿
Yu, Chen-Lu
論文名稱: 鍍鈀/金銅打線與合金型銅鈀打線在可靠度測試下之界面反應
The Interfacial Reactions on Pd/Au-coated and Pd-alloyed Cu wire bonds under reliability tests
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 合金型銅鈀打線可靠度測試介面反應
外文關鍵詞: Pd-alloyed copper wire bonding, Reliability tests, Interfacial reactions
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要藉由SEM與EPMA分析觀察鍍鈀/金銅線及合金型銅鈀線在可靠度測試過後,在銅球內部的鈀元素分佈情形與銅-鋁介面的介金屬化合物生長情形間之關係。研究發現,當進行高溫儲存測試(HTST)後,合金型銅鈀線在介面處的介金屬化合物生長速率會快過鍍鈀/金銅線,這可能由於銅-鋁間介金屬化合物生長速率主要受限於銅原子的擴散速率,在EPMA的量測後可發現,合金型銅鈀線不論在測試前後,銅球內之鈀元素皆以非常均勻的形式固溶於其中,相較於測試後鈀原子往球肩處堆積的鍍鈀/金銅線,抑制銅原子擴散進入鋁墊的能力更佳,所以也造成兩者在介面處介金屬化合物生長速率的差別。而在高加速溫溼試驗(HAST)中,銅-鋁介面之介金屬化合物成長速率則都偏低,甚至經過長時間測試後鋁墊仍清晰可見,顯示無論是以電鍍或是摻雜的方式加入鈀元素至銅線中,在此一試驗下,介金屬化合物的生長都能得到一定程度的抑制。較慢的銅-鋁間介金屬化合物生長速率及特定的界金屬相生成都有助於避免介面處裂縫生成及接點性質提升,故合金型銅鈀打線的開發對於改善打線接合處的可靠度性質有正面的幫助,未來或可成為打線的主流材料之一。

    In this study, we investigated the effect of Pd distribution on the interfacial reactions for copper wire bonding under reliability tests utilizing SEM and EPMA.
    From the results of HTST, we can find that the growth rate of IMCs of Pd-alloyed copper wire bonds is slower than that of Pd/Au-coated ones near the bond interface. This is probably because the dominate diffusion species in Cu-Al IMCs is copper. EPMA shows that in the Pd-alloyed Cu wire bond, the Pd was uniformly distributed in the copper bond both at the as-bonded step and the tested step. On the other hand, for the Pd/Au-coated Cu wire bond, Pd tends to gather at the ball shoulder rather than the Cu-Al interface. This might be the reason why Pd-alloyed copper wires show better performance of restraining IMCs growth than Pd/Au-coated copper wires.
    In the other reliability test, HAST, both the Pd-alloyed copper and Pd/Au-coated copper wires perform greatly restraining the growth of Cu-Al IMCs.
    In our research, Pd-alloyed copper wires impede the IMC growth even better than Pd-coated copper wires, having the potential of becoming the mainstream wire bonding material.

    中文摘要 I Abstract II 致謝 III 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 理論基礎及文獻回顧 3 2-1 打線製程原理 3 2-1-1 放電結球製程(Electrical Flame-Off process , EFO) 7 2-1-2 熱音波振動接合 8 2-2 打線材料 11 2-2-1 打線替代材料-銅(Cu) 11 2-2-2 抗氧化鍍鈀/金銅線 12 2-2-3 合金型銅鈀打線 13 2-3 銅鋁間介金屬化合物 17 2-4 銅線接點的可靠度測試 20 2-5 界面反應行為 21 第三章 實驗方法與步驟 23 3-1 實驗構想 23 3-2 打線製程 24 3-3 環境可靠度測試條件 27 3-4 試片製備 28 3-4-1 橫截面試片製備 28 3-4-2 穿透式電子顯微鏡之試片製備 28 3-5顯微組織觀察與分析 32 3-6 介面反應相與成分分佈之分析 35 3-6-1 介面反應相鑑定 35 3-6-2 鈀元素分佈分析 36 第四章 實驗結果與討論 38 4-1 銅鋁界面微觀組織觀察 38 4-2 銅鋁間介金屬化合物相鑑定 44 4-3 介金屬化合物成長動力學探討 46 4-4 鈀元素於銅球內分佈分析 50 4-5 接合性對於高加速溫溼試驗之影響 55 4-6 綜合討論 58 第五章 結論 60 第六章 未來展望 61 參考文獻 62

    [1] Z.W. Zhong, “Fine and ultra-fine pitch wire bonding: challenges and solutions”, Microelectron. Int., Vol. 26, No. 1, pp. 10-16, 2009.

    [2] S. Murali, N. Srikanth, and C.J. Vath III, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging”, Mater. Res. Bull., Vol. 38, No. 4, pp.637-646, 2003.

    [3] G.G. Harman, Wire Bonding in Microelectronics: Materials, Processes,Reliability, and Yield, 2nd Ed., McGraw-Hill, New York, USA, 1997.

    [4] L.T. Nguyen, D. McDonald, A.R. Danker, and P.Ng, “Optimization of copper wire bonding on Al-Cu metallization”, IEEE Trans. Comp. Packag. Manuf. Technol.– Part A, Vol. 18, No. 2, pp. 423-429, 1995.

    [5] H. Xu, C. Liu, V.V. Silberschmidt and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads”, Scripta Mater., Vol. 61, No. 2, pp. 165-168, 2009.

    [6] S. Kaimori, T. Nonaka and A. Mizoguchi,“The development of Cu bonding wire with oxidation-resistant metal coating”, IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 227-231, 2006.

    [7] T. Uno, “Bond reliability under humid environment for coated copper wire and bare copper wire”, Microelectron. Reliab., Vol. 51, No. 1, pp. 148-156, 2011.

    [8] T. Uno, “Enhancing bondability with coated copper bonding wire”, Microelectron. Reliab., Vol. 51, No. 1, pp. 88-96, 2011.

    [9] S. Kaimori, T. Nonaka ,and A. Mizoguchi, “Development of ‘hybrid bonding wire’,” SEI Tech. Rev., No. 63, pp. 14-18, 2006.

    [10] T. Uno, K. Kimura ,and T. Yamada, “Surface-enhanced copper bonding wire for LSI and its bond reliability under humid environments”, Proc. 17th Euro. Microelectron. Packag. Conf., Rimini, Italy, 2009.

    [11] M. Drozdov, G. Gur, Z. Atzmon, and W.D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing”, J. Mater. Sci., Vol. 43, No. 18, pp. 6038-6048, 2008.

    [12] M. Drozdov, G. Gur, Z. Atzmon and W.D. Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: I. Intermetallic formation
    in the as-bonded state”, J. Mater. Sci., Vol. 43, No. 18, pp. 6029-6037, 2008.

    [13] C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou and H.H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging”, Microelectron. Reliab.,Vol. 48, No. 3, pp. 416-424, 2008.

    [14] H.J. Kim, J.Y. Lee, K.-W. Paik, K.-W. Koh, J. Won, S. Choe, J. Lee, J.-T. Moon and Y.-J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability”, IEEE
    Trans. Comp. Packag. Technol., Vol. 26, No. 2, pp. 367-374, 2003.

    [15] H. Xu, C. Liu, V.V. Silberschmidt and Z. Chen, “Growth of intermetallic compounds in thermosonic copper wire bonding on
    aluminum metallization”, J. Electron. Mater., Vol. 39, No. 1, pp. 124-131, 2010.

    [16] S.K. Prasad, “Advanced Wirebond Interconnection Technology”,
    Kluwer Academic Publishers, New York, Boston, Dordrecht,
    London, Moscow, 2004.

    [17] Luke England and Tom Jiang, “Reliability of Cu Wire Bonding to Al Metallization”, ECTC, pp. 1604-1613, 2007.

    [18] C.D. Breach and F.W. Wulff , “A brief review of selected aspects of the materials science of ball bonding”, Microelectronics Reliability 50, pp. 1-20, 2010.

    [19] 蔡政學,“鍍鈀銅打線於通電測試下介面反應之研究”碩士論文,國立成功大學材料系所碩士班,2012。

    [20] 謝宗雍,“電子構裝技術簡介”,電子月刊第三卷第七期,1997年7月,p.57-p.76

    [21] F.W. Wulff, C.D. Breach, D. Stephan, Saraswati and K.J. Dittmer, “Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization”, Proc. of 6th Electronics Packaging Technology Conference, pp. 348-353, 2004.

    [22] Saraswati, Ei Phyu Phyu Theint, D. Stephan, H.M. Goh, E. Pasamanero, D.R.M. Calpito, F.W. Wulff, and C.D. Breach, “High temperature storage (HTS) performance of copper ball bonding wires”, Proc. of 7th Electronic Packaging Technology Conference, pp. 602-607, 2005.

    [23] Inderjit Singh, J.Y. On, Lee Levine, “Enhancing Fine Pitch, High I/O Devices with Copper Ball Bonding”, Proc. of 55th Electronic Components and Technology Conference, pp. 843-847, 2005.

    [24] H.T.G Hentzell, R.D. Thompson, and K.N. Tu, “Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation”, J. Appl. Phys., Vol. 54, No. 12, pp. 6923-6928, 1983.

    [25] JESD22-A103C, High Temperature Storage Life (HTST), JEDEC Solid State Technology Association, November 2004.

    [26] JESD22-A110D, Highly Accelerated Temperature and Humidity Stress Test (HAST), JEDEC Solid State Technology Association, November 2010.

    [27] J.J. Stephens, Internal Memorandum, Sandia National Laboratories,
    Albuquerque, NM, March 2, 1989.

    [28] Aditya Kumar and Zhong Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, Journal of Electronic Materials, Vol. 40, No. 2, 2011

    [29] 陳俊淇, “電子束/聚焦離子束雙束系統應用介紹”, 國家奈米元件實驗室。

    [30] 汪建民, “材料分析”,中國材料科學學會,1998.

    [31] 羅聖全,“電子顯微鏡介紹-TEM”, 工業技術研究院-微結構與特性分析研究室。

    [32] 王仁佑,“抗氧化金屬鈀層於銅線製程界面反應之影響”碩士論文,國立成功大學材料系所碩士班,2011。

    [33] 王聖涵 , “銅鈀合金濃度影響與鋁之介面反應研究” 碩士論文,國立成功大學材料系所碩士班,2012。

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE