簡易檢索 / 詳目顯示

研究生: 李旻倉
Li, Min-Tsang
論文名稱: X-ray奈米材料合成與應用
X-ray synthesis and applications of nanomaterials
指導教授: 胡宇光
Hwu, Yeu-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 106
中文關鍵詞: 金屬奈米粒子同步輻射x光材料合成
外文關鍵詞: metal nanoparticles, synchrotron x-ray, material synthesis
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用高穿透力的電磁輻射或是帶電粒子的幅射照射合成方法是均勻化學環境溶液中的合成反應時的有利方法。同步輻射加速器的導入使得 x-ray 產生了有著前所未有的亮度,這不僅使得以光當作偵測器的分析鑑定技術有了革命性的發展,而且也可在快速且可控制的合成反應中當作刺激源。
    本論文總結了 x-ray 合成的奈米粒子具有獨特性質與優異的性能,如高膠體穩定性、單分散性、可控制的尺寸分布與乾淨的奈米粒子表面無受到來自非想要的表面反應物與反應劑的汙染。因此,這些特點導致了高分散性的高生物相容性奈米粒子有著強健表面修飾能力,特別是於生物醫學領域應用,而其中許多只有通過同步輻射加速器的合成方法才能實現。本文對同步輻射合成的基本原理,包含一般金屬、氧化物,合金及高分子的奈米粒子合成進行了廣泛且系統性的研究。對於兩種不同實驗合成的機構: 以固定式溶液與連續流動式系統,對他們之間的相似與差異性也進行了廣泛的檢驗研究,並利用極強強度的 x-ray 證實了其合成方式所具有的獨特之處
    本文也簡要的論述快速的合成方法與可能量產合成的拓展性成為作為連續式流體反應系統的發明的動機。利用快速、均勻合成的化學反應特性有著許多有利特點,更進一步對該系統的完善,可以對在大型同步加速器設施中長期以來一直沒有實現並期盼已久工業化規模的化學合成生產開啟一扇窗。

    Radiation synthesis methods taking advantage of the high penetration electromagnetic waves or charged particles are favorable methods when a homogeneous chemical environment in solution is required for the synthesis reaction. The addition of synchrotron to the generation of x-rays with unprecedented brightness not only revolutionized the analytical characterization technologies using light as a probe, but as a stimulation source for fast and controllable synthesis.
    This thesis summarizes the x-ray synthesis of nanoparticles with unique properties and excellent performances, such as high colloidal stability, monodispersed and controllable size distribution and the clean nanoparticle surface without contamination of undesired surfactants and reaction agents. These characteristics consequently lead to highly dispersed biocompatible nanoparticles with robust surface modification were particularly favorable in biomedical applications and many of them are only possible with synchrotron synthesis. The general mechanism of synchrotron x-ray synthesis, common to the synthesis of metal, oxide and alloy and polymer nanoparticles, were extensively and systematically investigated. The similarity and the difference of the resulting nanoparticles with two different experimental synthesis configurations: the stationary solution and the continuous-flow system, were extensively examined and used to corroborate the unique features of the synthesis using extremely intense x-rays.
    The very fast synthesis and the possible scaling up is briefly discussed as the motivation to invent the continuously flow synthesis. With many favorable features taking advantage of the fast and uniform synthesis chemical reactions, further perfection of this system could open a window for the industrial scale chemical synthesis which were long expected but never realized in large synchrotron facilities.

    Table of contents I List of Table IV List of Figure V Chapter 1. Introduction 1 Chapter 2. High-energy photon synthesis 4 2.1. Materials and method 4 2.1.1. Synchrotron radiation 4 2.1.2. Chemicals 11 2.1.3. Batch synthesis 12 2.1.4. Continuous flow system synthesis 14 2.2. Characterization 16 2.3. Synthesis mechanism 17 2.4. Metallic nanoparticles 19 2.4.1. Gold (Au) 20 2.4.2. Silver nanoparticles 32 2.4.3. Bimetallic nanoparticles 32 2.4.4. Nano-Mesh 39 2.4.5. Phosphor 47 2.5. Interaction with organic molecules 52 2.5.1. Polymerization 52 2.5.2. Photoluminescence of organic molecules 61 Chapter 3. Application 69 3.1. Biomedical application-imaging with NPs 69 3.1.1. Toxicity of X-ray synthesized nanoparticles 69 3.1.2. Fluorescent NP and multimodality imaging 72 3.2. Catalyst 76 3.3. Optoelectronics 80 3.3.1. CIGS 80 3.3.2. Transparent conductive films 83 3.3.3. Inkjet print 86 Chapter 4. Challenges and Future of X-ray synthesis of nanoparticles 90 Chapter 5. Reference 92

    (1) Barclay, A. W. The Quantum Dot: A Journey into the Future of Microelectronics. Physics Education 1996, 31 (1), DOI: http://10.1088/0031-9120/31/1/029.
    (2) Chen, S.; Sommers, J. M. Alkanethiolate-Protected Copper Nanoparticles:  Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution. The Journal of Physical Chemistry B 2001, 105 (37), 8816-8820, DOI: http://doi.org/10.1021/jp011280n.
    (3) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 2005, 105 (4), 1025-1102, DOI: http://doi.org/10.1021/cr030063a.
    (4) Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry 1998, 22 (11), 1179-1201, DOI: https://doi.org/10.1039/A805753B.
    (5) Arbain, R.; Othman, M.; Palaniandy, S. Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering 2011, 24 (1), 1-9, DOI: https://doi.org/10.1016/j.mineng.2010.08.025.
    (6) Tran, K. T. M.; Nguyen, T. D. Lithography-based methods to manufacture biomaterials at small scales. Journal of Science: Advanced Materials and Devices 2017, 2 (1), 1-14, DOI: https://doi.org/10.1016/j.jsamd.2016.12.001.
    (7) Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Synthesis and Applications of Noble Metal Nanoparticles: A Review, 2017; Vol. 9, p 527-544.
    (8) Schmid, G. Clusters and Colloids: From Theory to Applications, Wiley: 2008.
    (9) Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V. K.; Nevěčná, T. j.; Zbořil, R. Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity. The Journal of Physical Chemistry B 2006, 110 (33), 16248-16253, DOI: http://doi.org/10.1021/jp063826h.
    (10) Odularu, A. T. Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorganic Chemistry and Applications 2018, 2018, 6, DOI: http://doi.org/10.1155/2018/9354708.
    (11) Xu, H.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chemical Society Reviews 2013, 42 (7), 2555-2567, DOI: http://doi.org/10.1039/C2CS35282F.
    (12) Akhavan, A.; Kalhor, H. R.; Kassaee, M. Z.; Sheikh, N.; Hassanlou, M. Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chemical Engineering Journal 2010, 159 (1), 230-235, DOI: https://doi.org/10.1016/j.cej.2010.02.010.
    (13) Boris Ildusovich Kharisov, O. V. K., Ubaldo Ortiz Mendez. Radiation Synthesis of Materials and Compounds, CRC Press: Boca Raton, 2013.
    (14) Henglein, A. Electronics of Colloidal Nanometer Particles. Berichte der Bunsengesellschaft für physikalische Chemie 1995, 99 (7), 903-913, DOI: http://doi.org/10.1002/bbpc.199500003.
    (15) Belloni, J. Metal nanocolloids. Current Opinion in Colloid & Interface Science 1996, 1 (2), 184-196, DOI: https://doi.org/10.1016/S1359-0294(96)80003-3.
    (16) Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis. Catalysis Today 2006, 113 (3), 141-156, DOI: https://doi.org/10.1016/j.cattod.2005.11.082.
    (17) Marignier, J. L.; Belloni, J.; Delcourt, M. O.; Chevalier, J. P. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature 1985, 317 (6035), 344-345, DOI: http://doi.org/10.1038/317344a0.
    (18) Lee, K.-P.; Gopalan, A. I.; Santhosh, P.; Lee, S. H.; Nho, Y. C. Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Composites Science and Technology 2007, 67 (5), 811-816, DOI: https://doi.org/10.1016/j.compscitech.2005.12.030.
    (19) Gachard, E.; Remita, H.; Khatouri, J.; Keita, B.; Nadjo, L.; Jacqueline Belloni, a. Radiation-induced and chemical formation of gold clusters. New Journal of Chemistry 1998, 22 (11), 1257-1265, DOI: https://doi.org/10.1039/A804445G.
    (20) Henglein, A.; Meisel, D. Radiolytic Control of the Size of Colloidal Gold Nanoparticles. Langmuir 1998, 14 (26), 7392-7396, DOI: http://doi.org/10.1021/la981278w.
    (21) Xie, Y.; Qiao, Z.; Chen, M.; Liu, X.; Qian, Y. γ-Irradiation Route to Semiconductor/Polymer Nanocable Fabrication. Advanced Materials 1999, 11 (18), 1512-1515, DOI: http://doi.org/10.1002/(SICI)1521-4095(199912)11:18<1512::AID-ADMA1512>3.0.CO;2-S.
    (22) Borse, P. H.; Yi, J. M.; Je, J. H.; Tsai, W. L.; Hwu, Y. pH dependence of synchrotron x-ray induced electroless nickel deposition. Journal of Applied Physics 2004, 95 (3), 1166-1170, DOI: http://doi.org/10.1063/1.1637724.
    (23) Liu, C. J.; Wang, C. H.; Wang, C. L.; Hwu, Y.; Lin, C. Y.; Margaritondo, G. Simple dose rate measurements for a very high synchrotron X-ray flux. Journal of Synchrotron Radiation 2009, 16 (Pt 3), 395-7, DOI: http://doi.org/10.1107/s0909049509007225.
    (24) Willmott, P. An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley: 2011.
    (25) Mobilio, S.; Boscherini, F.; Meneghini, C. Synchrotron radiation: Basics, methods and applications, 2015; p 1-799.
    (26) Shenoy, G. Basic Characteristics of Synchrotron Radiation. Structural Chemistry 2003, 14 (1), 3-14, DOI: http://doi.org/10.1023/A:1021656723964.
    (27) Joseph, D. Synchrotron Radiation: Useful and Interesting Applictions, IntechOpen: 2019.
    (28) http://henke.lbl.gov/optical_constants/bend2.html.
    (29) Wang, C.-H.; Chien, C.-C.; Yu, Y.-L.; Liu, C.-J.; Lee, C.-F.; Chen, C.-H.; Hwu, Y.; Yang, C.-S.; Je, J.-H.; Margaritondo, G. Structural properties of `naked' gold nanoparticles formed by synchrotron X-ray irradiation. Journal of Synchrotron Radiation 2007, 14 (6), 477-482, DOI: http://doi.org/10.1107/S0909049507044743.
    (30) Margaritondo, G. Elements of Synchrotron Light, Oxford University Press Inc: 2002.
    (31) Yang, Y.-C.; Wang, C.-H.; Hwu, Y.-K.; Je, J.-H. Synchrotron X-ray synthesis of colloidal gold particles for drug delivery. Materials Chemistry and Physics 2006, 100 (1), 72-76, DOI: https://doi.org/10.1016/j.matchemphys.2005.12.007.
    (32) Lai, S.-F.; Chien, C.-C.; Chen, W.-C.; Chen, Y.-Y.; Wang, C.-H.; Hwu, Y.; Yang, C. S.; Margaritondo, G. Size control of gold nanoparticles by intense X-ray irradiation: the relevant parameters and imaging applications. RSC Advances 2012, 2 (15), 6185-6191, DOI: http://doi.org/10.1039/C2RA20260C.
    (33) Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3 (1), 235, DOI: https://doi.org/10.3390/w3010235.
    (34) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Marie-Odile Delcourt, a. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New Journal of Chemistry 1998, 22 (11), 1239-1255, DOI: http://doi.org/10.1039/A801445K.
    (35) Remita, H.; Remita, S. Metal Clusters and Nanomaterials: Contribution of Radiation Chemistry. 2010; pp 347-383.
    (36) Abedini, A.; Daud, A. R.; Abdul Hamid, M. A.; Kamil Othman, N.; Saion, E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Research Letters 2013, 8 (1), 474, DOI: http://doi.org/10.1186/1556-276x-8-474.
    (37) Head, D.; Walker, D. C. Nitrous Oxide as a Scavenger in the Radiolysis of Water. Nature 1965, 207 (4996), 517-518, DOI: http://10.1038/207517a0.
    (38) Dykman, L. A.; Khlebtsov, N. G. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 2011, 3 (2), 34-55, DOI: http://doi.org/10.1039/C1CS15166E.
    (39) Han, G.; Ghosh, P.; Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007, 2 (1), 113-123, DOI: http://doi.org/10.2217/17435889.2.1.113.
    (40) Dreaden, E. C.; Austin, L. A.; Mackey, M. A.; El-Sayed, M. A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 2012, 3 (4), 457-478, DOI: http://doi.org/10.4155/tde.12.21.
    (41) Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 2016, 44 (1), 410-422, DOI: http://doi.org/10.3109/21691401.2014.955107.
    (42) Farooq, M. U.; Novosad, V.; Rozhkova, E. A.; Wali, H.; Ali, A.; Fateh, A. A.; Neogi, P. B.; Neogi, A.; Wang, Z. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci Rep 2018, 8 (1), 2907, DOI: http://doi.org/10.1038/s41598-018-21331-y.
    (43) Viswambari Devi, R.; Doble, M.; Verma, R. S. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosensors and Bioelectronics 2015, 68, 688-698, DOI: https://doi.org/10.1016/j.bios.2015.01.066.
    (44) Huang, X.; O'Connor, R.; Kwizera, E. A. Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection. Nanotheranostics 2017, 1 (1), 80-102, DOI: http://doi.org/10.7150/ntno.18216.
    (45) Li, Y.; Schluesener, H. J.; Xu, S. Gold nanoparticle-based biosensors. Gold Bulletin 2010, 43 (1), 29-41, DOI: http://doi.org/10.1007/bf03214964.
    (46) Hutter, E.; Maysinger, D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends in Pharmacological Sciences 2013, 34 (9), 497-507, DOI: https://doi.org/10.1016/j.tips.2013.07.002.
    (47) Aldewachi, H.; Chalati, T.; Woodroofe, M. N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018, 10 (1), 18-33, DOI: http://doi.org/10.1039/C7NR06367A.
    (48) Xi, D.; Dong, S.; Meng, X.; Lu, Q.; Meng, L.; Ye, J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Advances 2012, 2 (33), 12515-12524, DOI: http://doi.org/10.1039/C2RA21263C.
    (49) Cole, L. E.; Ross, R. D.; Tilley, J. M. R.; Vargo-Gogola, T.; Roeder, R. K. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 2015, 10 (2), 321-341, DOI: http://doi.org/10.2217/nnm.14.171.
    (50) Cheheltani, R.; Ezzibdeh, R. M.; Chhour, P.; Pulaparthi, K.; Kim, J.; Jurcova, M.; Hsu, J. C.; Blundell, C.; Litt, H. I.; Ferrari, V. A.; Allcock, H. R.; Sehgal, C. M.; Cormode, D. P. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 2016, 102, 87-97, DOI: http://doi.org/10.1016/j.biomaterials.2016.06.015.
    (51) Wang, J.; Liu, D.; Wang, Z. Synthesis and cell-surface binding of lectin-gold nanoparticle conjugates. Analytical Methods 2011, 3 (8), 1745-1751, DOI: http://doi.org/10.1039/C1AY05151B.
    (52) Jahnke, J. P.; Cornejo, J. A.; Sumner, J. J.; Schuler, A. J.; Atanassov, P.; Ista, L. K. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1. Biointerphases 2016, 11 (1), 011003, DOI: http://doi.org/10.1116/1.4939244.
    (53) Dekiwadia, C. D.; Lawrie, A. C.; Fecondo, J. V. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. Journal of Peptide Science 2012, 18 (8), 527-534, DOI: http://doi.org/10.1002/psc.2430.
    (54) Huo, S.; Jin, S.; Ma, X.; Xue, X.; Yang, K.; Kumar, A.; Wang, P. C.; Zhang, J.; Hu, Z.; Liang, X.-J. Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry. ACS Nano 2014, 8 (6), 5852-5862, DOI: http://doi.org/10.1021/nn5008572.
    (55) Ali, M. R. K.; Wu, Y.; Ghosh, D.; Do, B. H.; Chen, K.; Dawson, M. R.; Fang, N.; Sulchek, T. A.; El-Sayed, M. A. Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion. ACS nano 2017, 11 (4), 3716-3726, DOI: http://doi.org/10.1021/acsnano.6b08345.
    (56) Pong, B.-K.; Elim, H. I.; Chong, J.-X.; Ji, W.; Trout, B. L.; Lee, J.-Y. New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold(III) Salt:  Formation of the Au Nanowire Intermediate and Its Nonlinear Optical Properties. The Journal of Physical Chemistry C 2007, 111 (17), 6281-6287, DOI: http://doi.org/10.1021/jp068666o.
    (57) Li, M.-T.; Lai, S.-F.; Yang, S.-M.; Chen, Y.-S.; Chen, Y.-J.; Tok, E. S.; Margaritondo, G.; Hwu, Y. Gold nano-mesh synthesis by continuous-flow X-ray irradiation. Journal of Synchrotron Radiation 2019, 26 (6), 1929-1935, DOI: http://doi.org/10.1107/S1600577519011834.
    (58) Li, L.; Yan, J.; Wang, T.; Zhao, Z.-J.; Zhang, J.; Gong, J.; Guan, N. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications 2015, 6, 5881, DOI: http://doi.org/10.1038/ncomms6881
    https://www.nature.com/articles/ncomms6881#supplementary-information.
    (59) Gupta, A.; Moyano, D. F.; Parnsubsakul, A.; Papadopoulos, A.; Wang, L.-S.; Landis, R. F.; Das, R.; Rotello, V. M. Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (22), 14096-14101, DOI: http://doi.org/10.1021/acsami.6b02548.
    (60) Siddiqi, K. S.; ur Rahman, A.; Tajuddin; Husen, A. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. Nanoscale Research Letters 2016, 11 (1), 498, DOI: http://doi.org/10.1186/s11671-016-1714-0.
    (61) Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International journal of molecular sciences 2016, 17 (9), 1534, DOI: http://doi.org/10.3390/ijms17091534.
    (62) Kong, F.-Y.; Zhang, J.-W.; Li, R.-F.; Wang, Z.-X.; Wang, W.-J.; Wang, W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules 2017, 22 (9), 1445, DOI: http://doi.org/10.3390/molecules22091445.
    (63) Mendes, R.; Fernandes, A. R.; Baptista, P. V. Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer-The Case for Combined Delivery? Genes (Basel) 2017, 8 (3), 94, DOI: http://doi.org/10.3390/genes8030094.
    (64) Tiwari, P. M.; Vig, K.; Dennis, V. A.; Singh, S. R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1 (1), 31, DOI: http://doi.org/10.3390/nano1010031.
    (65) Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312 (5776), 1027, DOI: http://doi.org/10.1126/science.1125559.
    (66) Wang, C.-H.; Liu, C.-J.; Wang, C.-L.; Hua, T.-E.; Judy, M. O.; Lee, K. H.; Hwu, Y.; Yang, C.-S.; Liu, R.-S.; Lin, H.-M.; Je, J.-H.; Margaritondo, G. Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intense x-ray irradiation. Journal of Physics D: Applied Physics 2008, 41 (19), 195301, DOI: http://doi.org/10.1088/0022-3727/41/19/195301
    (67) Lai, S.-F.; Chen, W.-C.; Wang, C.-L.; Chen, H.-H.; Chen, S.-T.; Chien, C.-C.; Chen, Y.-Y.; Hung, W.-T.; Cai, X.; Li, E.; Kempson, I. M.; Hwu, Y.; Yang, C. S.; Tok, E.-S.; Tan, H. R.; Lin, M.; Margaritondo, G. One-Pot Tuning of Au Nucleation and Growth: From Nanoclusters to Nanoparticles. Langmuir 2011, 27 (13), 8424-8429, DOI: http://doi.org/10.1021/la200861e.
    (68) Lai, S.-F.; Tan, H.-R.; Tok, E. S.; Chen, Y.-H.; Ong, E. B. L.; Li, M.-T.; Chen, Y.-Y.; Chien, F.-C.; Chen, P.; Margaritondo, G.; Hwu, Y. Optimization of gold nanoparticle photoluminescence by alkanethiolation. Chemical Communications 2015, 51 (37), 7954-7957, DOI: http://doi.org/10.1039/C5CC01229E.
    (69) Cai, X.; Chen, H.-H.; Wang, C.-L.; Chen, S.-T.; Lai, S.-F.; Chien, C.-C.; Chen, Y.-Y.; Kempson, I. M.; Hwu, Y.; Yang, C. S.; Margaritondo, G. Imaging the cellular uptake of tiopronin-modified gold nanoparticles. Analytical and Bioanalytical Chemistry 2011, 401 (3), 809-816, DOI: http://doi.org/10.1007/s00216-011-4986-3.
    (70) Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction. The Journal of Physical Chemistry C 2009, 113 (16), 6573-6576, DOI: http://doi.org/10.1021/jp900775b.
    (71) Wang, C.; Liu, C.-J.; Wang, C.-L.; Chien, C.-C.; Hwu, Y.; Liu, R.-S.; Yang, C.-S.; Je, J.; Lin, H.-M.; Margaritondo, G. Intense X-ray induced formation of silver nanoparticles stabilized by biocompatible polymers. Applied Physics A 2009, 97, DOI: http://doi.org/10.1007/s00339-009-5377-x.
    (72) Li, M.-T.; Wang, C.-H.; Lai, S.-F.; Edwin, B. L. O.; Chen, Y. H.; Lin, C.-K.; Margaritondo, G.; Hwu, Y. X-ray irradiation synthesis of PEG-coated Au-Pd nanoparticles. Nanotechnology 2015, 26 (35), 355601, DOI: https://doi.org/10.1088/0957-4484/26/35/355601.
    (73) Denton, A. R.; Ashcroft, N. W. Vegard's law. Physical Review A 1991, 43 (6), 3161-3164, DOI: http://doi.org/10.1103/PhysRevA.43.3161.
    (74) Li, M.-T.; Wang, C.-H.; Lai, S.-F.; Chen, Y.-H.; Ong, E. B. L.; Lin, C.-K.; Margaritondo, G.; Hwu, Y. Uncapped Au–Pd colloidal nanoparticles show catalytic enhancement. RSC Advances 2015, 5 (76), 61846-61850, DOI: http://doi.org/10.1039/C5RA10915A.
    (75) Foss, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape. The Journal of Physical Chemistry 1994, 98 (11), 2963-2971, DOI: http://doi.org/10.1021/j100062a037.
    (76) Pei, L.; Mori, K.; Adachi, M. Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization. Langmuir 2004, 20 (18), 7837-7843, DOI: http://doi.org/10.1021/la049262v.
    (77) Ronda, C. R.; Jüstel, T.; Nikol, H. Rare earth phosphors: fundamentals and applications. Journal of Alloys and Compounds 1998, 275-277, 669-676, DOI: https://doi.org/10.1016/S0925-8388(98)00416-2.
    (78) Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Manabe, T. Photoluminescence property of vanadates M2V2O7 (M: Ba, Sr and Ca). Optical Materials 2010, 32 (12), 1618-1621, DOI: https://doi.org/10.1016/j.optmat.2010.05.021.
    (79) Grandhe, B. K.; Ramaprabhu, S.; Buddhudu, S.; Sivaiah, K.; Bandi, V. R.; Jang, K. Spectral characterization of novel LiZnVO4 phosphor. Optics Communications 2012, 285 (6), 1194-1198, DOI: https://doi.org/10.1016/j.optcom.2011.10.013.
    (80) Luitel, H. N.; Chand, R.; Torikai, T.; Yada, M.; Watari, T. Rare Earth Free Phosphor with Controlled Microstructure and Its Photocatalytic Activity. International Journal of Photoenergy 2013, 2013, 9, DOI: http://doi.org/10.1155/2013/410613.
    (81) Matsushima, Y.; Koide, T.; Hiro-Oka, M.; Shida, M.; Sato, A.; Sugiyama, S.; Ito, M. Self-Activated Vanadate Compounds Toward Realization of Rare-Earth-Free Full-Color Phosphors. Journal of the American Ceramic Society 2015, 98 (4), 1236-1244, DOI: http://doi.org/10.1111/jace.13463.
    (82) Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chemical Reviews 2004, 104 (1), 139-174, DOI: http://doi.org/10.1021/cr020357g.
    (83) Dexter, D. L. Possibility of Luminescent Quantum Yields Greater than Unity. Physical Review 1957, 108 (3), 630-633, DOI: http://10.1103/PhysRev.108.630.
    (84) Wegh, R. T.; Donker, H.; Oskam, K. D.; Meijerink, A. Visible Quantum Cutting in LiGdF4Eu3+ Through Downconversion. Science 1999, 283 (5402), 663-666, DOI: http://doi.org/10.1126/science.283.5402.663.
    (85) Han, S.; Qin, X.; An, Z.; Zhu, Y.; Liang, L.; Han, Y.; Huang, W.; Liu, X. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature Communications 2016, 7, 13059, DOI: http://doi.org/10.1038/ncomms13059.
    (86) Wang, F.; Liu, X. Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation. Accounts of Chemical Research 2014, 47 (4), 1378-1385, DOI: http://doi.org/10.1021/ar5000067.
    (87) Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R. L.; Cai, W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano 2016, 10 (4), 3918-3935, DOI: http://doi.org/10.1021/acsnano.6b01401.
    (88) Sudheendra, L.; Das, G. K.; Li, C.; Stark, D.; Cena, J.; Cherry, S.; Kennedy, I. M. NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging. Chemistry of Materials 2014, 26 (5), 1881-1888, DOI: http://doi.org/10.1021/cm404044n.
    (89) Tseng, S. J.; Chien, C.-C.; Liao, Z.-X.; Chen, H.-H.; Kang, Y.-D.; Wang, C.-L.; Hwu, Y.; Margaritondo, G. Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter 2012, 8 (5), 1420-1427, DOI: http://doi.org/10.1039/C1SM06682J.
    (90) Lin, F.-S.; Chien, C.-T.; Chiu, W.-C.; Lin, S.-Y.; Tseng, F.-G.; Hwu, Y.; Yang, C.-S. Chemical auxiliary-free polymerization yielding non-linear PEG for protein-resistant application. RSC Advances 2012, 2 (18), 7174-7179, DOI: http://doi.org/10.1039/C2RA20117H.
    (91) Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.; Louis, C.; Bus, E.; van Bokhoven, J. A. The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. Journal of Catalysis 2006, 240 (2), 222-234, DOI: https://doi.org/10.1016/j.jcat.2006.04.004.
    (92) Guzman, J.; Gates, B. C. Structure and Reactivity of a Mononuclear Gold-Complex Catalyst Supported on Magnesium Oxide. Angewandte Chemie International Edition 2003, 42 (6), 690-693, DOI: http://doi.org/10.1002/anie.200390191.
    (93) Wang, B.; Kodama, M.; Mukataka, S.; Kokufuta, E. On the intermolecular crosslinking of PVA chains in an aqueous solution by γ-ray irradiation. Polymer Gels and Networks 1998, 6 (1), 71-81, DOI: https://doi.org/10.1016/S0966-7822(98)00003-3.
    (94) Spinks, J. W. T.; Woods, R. J. An Introduction to Radiation Chemistry, Third Edition, New York, Toronto 1990. Seiten, Preis: DM 91, 45 (John-Wiley and Sons, Inc., , 1991). 3 ed.; Wiley: 1964.
    (95) Luo, C.; Zhang, Y.; Zeng, X.; Zeng, Y.; Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. Journal of Colloid and Interface Science 2005, 288 (2), 444-448, DOI: https://doi.org/10.1016/j.jcis.2005.03.005.
    (96) Ahmad, M. B.; Tay, M. Y.; Shameli, K.; Hussein, M. Z.; Lim, J. J. Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without any Reducing Agent. International Journal of Molecular Sciences 2011, 12 (8), 4872.
    (97) Patil, M. P.; Gaikwad, N. J. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution. Brazilian Journal of Pharmaceutical Sciences 2011, 47, 161-166, DOI: http://dx.doi.org/10.1590/S1984-82502011000100020
    (98) Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, Academic Press: 1964.
    (99) Tabb, D. L.; Sevcik, J. J.; Koenig, J. L. Fourier transform infrared study of the effects of irradiation on polyethylene. Journal of Polymer Science: Polymer Physics Edition 1975, 13 (4), 815-824, DOI: http://doi.org/10.1002/pol.1975.180130413.
    (100) Krklješ, A. N.; Marinović-Cincović, M. T.; Kačarević-Popović, Z. M.; Nedeljković, J. M. Dynamic thermogravimetric degradation of gamma radiolytically synthesized Ag–PVA nanocomposites. Thermochimica Acta 2007, 460 (1), 28-34, DOI: https://doi.org/10.1016/j.tca.2007.05.015.
    (101) Hussain, S. M.; Hess, K. L.; Gearhart, J. M.; Geiss, K. T.; Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 2005, 19 (7), 975-983, DOI: https://doi.org/10.1016/j.tiv.2005.06.034.
    (102) Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environmental Science & Technology 2008, 42 (12), 4583-4588, DOI: Http://doi.org/10.1021/es703238h.
    (103) Maria Antonietta, Z.; Serenella, M.; Alessia, L.; Valeria Marina, N.; Joanna, I. L.; Massimiliano, P. Toxicity of Nanoparticles. Current Medicinal Chemistry 2014, 21 (33), 3837-3853, DOI: http://dx.doi.org/10.2174/0929867321666140601162314.
    (104) Khalili Fard, J.; Jafari, S.; Eghbal, M. A. A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Adv Pharm Bull 2015, 5 (4), 447-454, DOI: http://doi.org/10.15171/apb.2015.061.
    (105) Kumar, V.; Sharma, N.; Maitra, S. S. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters 2017, 7 (4), 243-256, DOI: http://doi.org/10.1007/s40089-017-0221-3.
    (106) Elsaesser, A.; Howard, C. V. Toxicology of nanoparticles. Advanced Drug Delivery Reviews 2012, 64 (2), 129-137, DOI: https://doi.org/10.1016/j.addr.2011.09.001.
    (107) Wang, F.; Yu, L.; Monopoli, M. P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K. A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine: Nanotechnology, Biology and Medicine 2013, 9 (8), 1159-1168, DOI: https://doi.org/10.1016/j.nano.2013.04.010.
    (108) Sharma, V.; Shukla, R. K.; Saxena, N.; Parmar, D.; Das, M.; Dhawan, A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters 2009, 185 (3), 211-218, DOI: https://doi.org/10.1016/j.toxlet.2009.01.008.
    (109) Ahamed, M.; Karns, M.; Goodson, M.; Rowe, J.; Hussain, S. M.; Schlager, J. J.; Hong, Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology 2008, 233 (3), 404-410, DOI: https://doi.org/10.1016/j.taap.2008.09.015.
    (110) Wang, C.-H.; Hua, T.-E.; Chien, C.-C.; Yu, Y.-L.; Yang, T.-Y.; Liu, C.-J.; Leng, W.-H.; Hwu, Y.; Yang, Y.-C.; Kim, C.-C.; Je, J.-H.; Chen, C.-H.; Lin, H.-M.; Margaritondo, G. Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics 2007, 106 (2), 323-329, DOI: https://doi.org/10.1016/j.matchemphys.2007.06.024.
    (111) Chen, H.-H.; Chien, C.-C.; Petibois, C.; Wang, C.-L.; Chu, Y. S.; Lai, S.-F.; Hua, T.-E.; Chen, Y.-Y.; Cai, X.; Kempson, I. M.; Hwu, Y.; Margaritondo, G. Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. Journal of Nanobiotechnology 2011, 9 (1), 14, DOI: http://doi.org/10.1186/1477-3155-9-14.
    (112) Chien, C.-C.; Chen, H.-H.; Lai, S.-F.; Hwu, Y.; Petibois, C.; Yang, C. S.; Chu, Y.; Margaritondo, G. X-ray imaging of tumor growth in live mice by detecting gold-nanoparticle-loaded cells. Sci Rep 2012, 2, 610-610, DOI: http://doi.org/10.1038/srep00610.
    (113) Huang, Y.-C.; Yang, Y.-C.; Yang, K.-C.; Shieh, H.-R.; Wang, T.-Y.; Hwu, Y.; Chen, Y.-J. Pegylated Gold Nanoparticles Induce Apoptosis in Human Chronic Myeloid Leukemia Cells. BioMed Research International 2014, 2014, 9, DOI: http://doi.org/10.1155/2014/182353.
    (114) Zhang, X.-D.; Wu, H.-Y.; Wu, D.; Wang, Y.-Y.; Chang, J.-H.; Zhai, Z.-B.; Meng, A.-M.; Liu, P.-X.; Zhang, L.-A.; Fan, F.-Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 2010, 5, 771-781, DOI: http://doi.org/10.2147/IJN.S8428.
    (115) Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater 2009, 21, 419-424, DOI: http://doi.org/10.1002/adma.200801393.
    (116) Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F. J.; Maitra, A.; Prashant, C.; Dinda, A. K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 2010, 5, 983-989, DOI: http://doi.org/10.2147/IJN.S13244.
    (117) Lai, S. F.; Chien, C. C.; Chen, W. C.; Chen, H. H.; Chen, Y. Y.; Wang, C. L.; Hwu, Y.; Yang, C. S.; Chen, C. Y.; Liang, K. S.; Petibois, C.; Tan, H. R.; Tok, E. S.; Margaritondo, G. Very small photoluminescent gold nanoparticles for multimodality biomedical imaging. Biotechnology Advances 2013, 31 (3), 362-8, DOI: http://doi.org/10.1016/j.biotechadv.2012.05.005.
    (118) Lai, S.-F.; Ko, B.-H.; Chien, C.-C.; Chang, C.-J.; Yang, S.-M.; Chen, H.-H.; Petibois, C.; Hueng, D.-Y.; Ka, S.-M.; Chen, A.; Margaritondo, G.; Hwu, Y. Gold nanoparticles as multimodality imaging agents for brain gliomas. Journal of Nanobiotechnology 2015, 13 (1), 85, DOI: http://doi.org/10.1186/s12951-015-0140-2.
    (119) Ghosh, S. K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Applied Catalysis A: General 2004, 268 (1), 61-66, DOI: https://doi.org/10.1016/j.apcata.2004.03.017.
    (120) Yazid, H.; Adnan, R.; Farrukh, M. A.; Hamid, S. A. Synthesis of Au/Al2O3 Nanocatalyst and its Application in the Reduction of p-Nitrophenol. Journal of the Chinese Chemical Society 2011, 58 (5), 593-601, DOI: http://doi.org/10.1002/jccs.201190093.
    (121) He, J.; Ji, W.; Yao, L.; Wang, Y.; Khezri, B.; Webster, R. D.; Chen, H. Strategy for Nano-Catalysis in a Fixed-Bed System. Advanced Materials 2014, 26 (24), 4151-4155, DOI: http://doi.org/10.1002/adma.201306157.
    (122) Prati, L.; Villa, A.; Porta, F.; Wang, D.; Su, D. Single-phase gold/palladium catalyst: The nature of synergistic effect. Catalysis Today 2007, 122 (3), 386-390, DOI: https://doi.org/10.1016/j.cattod.2006.11.003.
    (123) Tung, H.-T.; Hwu, Y.; Chen, I.-G.; Tsai, M.-G.; Song, J.-M.; Kempson, I. M.; Margaritondo, G. Fabrication of single crystal CuGaS2 nanorods by X-ray irradiation. Chemical Communications 2011, 47 (32), 9152-9154, DOI: http://doi.org/10.1039/C1CC12031J.
    (124) Tung, H.-T.; Chen, I.-G.; Song, J.-M.; Tsai, M.-G.; Kempson, I. M.; Margaritondo, G.; Hwu, Y. Cu(In1−xGax)S2 nanocrystals and films: low-temperature synthesis with size and composition control. Nanoscale 2013, 5 (11), 4706-4710, DOI: http://doi.org/10.1039/C3NR00264K.
    (125) Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Letters 2008, 8 (2), 689-692, DOI: http://doi.org/10.1021/nl073296g.
    (126) Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T.-S.; Lee, D.; Ko, S. H. Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application. Advanced Functional Materials 2013, 23 (34), 4171-4176, DOI: http://doi.org/10.1002/adfm.201203802.
    (127) Farbod, M.; Zilaie, A.; Kazeminezhad, I. Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates. Journal of Science: Advanced Materials and Devices 2017, 2 (1), 99-104, DOI: https://doi.org/10.1016/j.jsamd.2017.02.005.
    (128) Han, N. M.; Wang, Z.; Shen, X.; Wu, Y.; Liu, X.; Zheng, Q.; Kim, T.-H.; Yang, J.; Kim, J.-K. Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces 2018, 10 (7), 6580-6592, DOI: http://doi.org/10.1021/acsami.7b19069.
    (129) Kaempgen, M.; Duesberg, G. S.; Roth, S. Transparent carbon nanotube coatings. Applied Surface Science 2005, 252 (2), 425-429, DOI: https://doi.org/10.1016/j.apsusc.2005.01.020.
    (130) Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2 (3), 463-470, DOI: http://doi.org/10.1021/nn700375n.
    (131) Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D. Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 2014, 6 (22), 13535-13543, DOI: http://doi.org/10.1039/C4NR04151H.
    (132) Tung, H. T.; Chen, I. G.; Kempson, I. M.; Song, J. M.; Liu, Y. F.; Chen, P. W.; Hwang, W. S.; Hwu, Y. Shape-controlled synthesis of silver nanocrystals by X-ray irradiation for inkjet printing. ACS Appl Mater Interfaces 2012, 4 (11), 5930-5, DOI: http://doi.org/10.1021/am3015718.

    下載圖示 校內:2025-04-01公開
    校外:2025-04-01公開
    QR CODE