簡易檢索 / 詳目顯示

研究生: 蔡漢霖
Tsai, Han-Lin
論文名稱: 使用電位計與影像伺服於Pendubot之甩上與平衡穩定
Swing Up and Stabilizing Pendubot with Potentiometer and Visual Servo
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: PendubotVisual ServoCoefficient Diagram Method
外文關鍵詞: Pendubot, Visual Servo, Coefficient Diagram Method
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在建立一套Pendubot倒單擺甩上切換與垂直穩定控制系統,使用電位計量測倒單擺甩上時之角度姿態,藉以判斷切換至影像伺服以達成倒單擺之平衡穩定。甩上控制以能量法設計實現,穩定控制則以PID結構結合係數圖法(Coefficient Diagram Method)進行參數設計,其中影像伺服藉由影像動態輪廓追蹤搭配多邊形擬合法估測倒單擺姿態,實時計算倒單擺擺角,並採用ARM-Based的STM32F4晶片與電腦進行串列傳輸即時估測角度。最後透過實體實驗以驗證本文之分析與設計結果。

    This article aims to establish a Pendubot system with swing-up and stabilization control. Using potentiometer to measure the angle of the inverted pendulum when it is swinging up, and determine whether to switch to visual servo to achieve stability of the inverted pendulum. The swing-up control is designed and realized by the energy method. The stabilization control is designed by PID structure combined with the coefficient diagram method for parameter design. The visual servo uses dynamic image tracking and polygon fitting method to estimate the pendubot posture. At the same time, the angle is calculated, and then transmitted to the Cortex-M4 chip for control. Finally, experiments are conducted to verify the analysis and design results of this article.

    摘要 i Extended Abstract ii 致謝 vi 目錄 vii 表目錄 xii 圖目錄 xiv 符號表 xx 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 欠驅動系統的發展 2 1-3.2 Pendubot相關研究 5 1-3.3 視覺伺服領域 7 1-3.4 視覺伺服相關研究 9 1-3.5 視覺伺服於欠驅動系統的應用 14 1-4 研究目的 15 1-5 研究方法 16 1-6 本文架構 17 第二章 系統數學基礎 18 2-1 Pendubot系統動態方程式推導 18 2-2 Pendubot之非線性特性 22 2-3 Pendubot之線性特性 26 2-4 Pendubot可控制性 27 2-5 直流馬達數學參數模型 28 2-6 Pendubot單擺之機電模型動態方程式 30 2-7 本章總結 30 第三章 系統設計與發展 31 3-1 Pendubot系統設計 31 3-1.1 系統設計方法論 31 3-1.2 需求分析 34 3-1.3 實體設計 35 3-1.4 系統架構 36 3-2 系統實體材料選擇與製造 38 3-2.1 視覺感測系統 38 3-2.2 控制整合介面 42 3-2.3 動力系統 43 3-2.4 機構本體材料 45 3-2.5 系統實體製造 46 3-2.6 系統拘束 46 3-3 系統發展過程 47 3-3.1 類比控制 47 3-3.2 數位控制 49 3-3.3 影像伺服控制 51 3-4 本章總結 52 第四章 系統控制策略與軟體設計 53 4-1 擺桿追蹤與角度測量 53 4-1.1 HSV色彩空間 53 4-1.2 擺桿外型辨識與角度測量 56 4-2 控制器設計 57 4-2.1 切換控制器 58 4-2.2 甩上控制 59 4-2.3 穩定控制器-PID控制 68 4-2.4 參數設計-係數圖法 69 4-2.5 穩定性分析 76 4-3 通訊傳輸 78 4-3.1 通訊協定 78 4-3.2 直接記憶體存取 80 4-4 軟體整合結果 81 4-5 本章總結 82 第五章 系統測試與模擬 83 5-1 組件與馬達靜態參數量測與模擬 83 5-1.1 組件參數分析 83 5-1.2 馬達靜態參數分析 85 5-2 影像測量角度驗證 89 5-3 Pendubot性能測試與改善 93 5-3.1 結構震動改善 95 5-3.2 角度偵測改善 96 5-3.3 甩上改善 98 5-3.4 平衡穩定改善 99 5-4 Pendubot理論模型模擬與實驗量測之結果 103 5-5 本章總結 123 第六章 結論與未來展望 124 6-1 結論 124 6-2 未來展望 125 參考資料 126

    [1] Lundberg, K. H., & Barton, T. W. (2010). History of Inverted-Pendulum Systems. IFAC Proceedings Volumes, 42(24), 131-135. doi:https://doi.org/10.3182/20091021-3-JP-2009.00025
    [2] Furuta, K., Yamakita, M., & Kobayashi, S. (1992). Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 206(4), 263–269. doi:https://doi.org/10.1243/PIME_PROC_1992_206_341_02
    [3] Roberge, J. K. (1960). The Mechanical Seal. Bachelor’s Thesis, Massachusetts Institute of Technology.
    [4] He, B., Wang, S., & Liu, Y. (2019). Underactuated robotics: A review. International Journal of Advanced Robotic Systems, 16.
    [5] Spong, M. W. (1994). Underactuated mechanical systems, Berlin, Heidelberg.
    [6] Spong, M. W., & Block, D. J. (1995). The Pendubot: a mechatronic system for control research and education. Paper presented at the Proceedings of 1995 34th IEEE Conference on Decision and Control.
    [7] Fantoni, I., Lozano, R., & Spong, M. W. (2000). Energy based control of the Pendubot. IEEE Transactions on Automatic Control, 45(4), 725-729.
    [8] Xin, X., Kaneda, M., & Oki, T. (2002). The Swing Up Control for The Pendubot Based on Energy Control Approach. IFAC Proceedings Volumes, 35(1), 461-466. doi:https://doi.org/10.3182/20020721-6-ES-1901.00889
    [9] Qian, D., Yi, J., & Zhao, D. (2007). Hierarchical Sliding Mode Control to Swing up a Pendubot. Paper presented at the 2007 American Control Conference.
    [10] Xia, D., Chai, T., & Wang, L. (2014). Fuzzy Neural-Network Friction Compensation-Based Singularity Avoidance Energy Swing-Up to Nonequilibrium Unstable Position Control of Pendubot. Ieee Transactions on Control Systems Technology, 22(2), 690-705.
    [11] Wu, J. D., Wang, Y. W., Ye, W. J., & Su, C. Y. (2019). Control strategy based on Fourier transformation and intelligent optimization for planar Pendubot. Information Sciences, 491, 279-288. doi:10.1016/j.ins.2019.03.051
    [12] Nagarajan, U., Kantor, G., & Hollis, R. (2014). The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33(6), 917–930. https://doi.org/10.1177/0278364913509126
    [13] Hehn, M., & Andrea, R. D. (2011). A flying inverted pendulum. Paper presented at the 2011 IEEE International Conference on Robotics and Automation.
    [14] Hill, J., & Park, W. T. (1979). Real time control of a robot with a mobile camera. ISIR Proceedings Volumes, 9, 233-246.
    [15] Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651-670. doi: https://doi.org/10.1109/70.538972
    [16] Kragic, D., Christensen, H., & A, F. (2002). Survey on Visual Servoing for Manipulation. Comput. Vis. Act. Percept. Lab. Fiskartorpsv, 15.
    [17] Ohyama, Y., Yamaura, T., & Ikebe, J. (1996). The Design of Visual Servo Controller for an Inverted Pendulum. IFAC Proceedings Volumes, 29(1), 2940-2945. doi:https://doi.org/10.1016/S1474-6670(17)58124-0
    [18] Magana, M. E., & Holzapfel, F. (1998). Fuzzy-logic control of an inverted pendulum with vision feedback. IEEE Transactions on Education, 41(2), 165-170. doi: https://doi.org/10.1109/13.669727
    [19] Stuflesser, M., & Brandner, M. (2008). Vision-Based Control of an Inverted Pendulum using Cascaded Particle Filters. Paper presented at the 2008 IEEE Instrumentation and Measurement Technology Conference.
    [20] Brill, A., Frank, J. A., & Kapila, V. (2016). Visual servoing of an inverted pendulum on cart using a mounted smartphone. Paper presented at the 2016 American Control Conference (ACC).
    [21] Espejel-Rivera, A., Ramos-Velasco, L. E., & Celikovský, S. (2005). Visual Servoing for An Underactuated Manipulator.
    [22] Espinoza Quesada, E. S., & Ramos-Velasco, L. E. (2006). Visual Servoing for an Inverted Pendulum Using a Digital Signal Processor. Paper presented at the 2006 IEEE International Symposium on Signal Processing and Information Technology.
    [23] Kolker, A., Winkler, A., Bdiwi, M., & Suchý, J. (2013). Robot visual servoing using the example of the inverted pendulum. Paper presented at the 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).
    [24] Åström, K. J., & Furuta, K. (1996). Swinging Up a Pendulum by Energy Control. IFAC Proceedings Volumes, 29(1), 1919-1924. doi:https://doi.org/10.1016/S1474-6670(17)57951-3
    [25] Ding, H., Li, Y., Mao, J., Wei, K., & Yang, L. (2006). Dynamic Switching Control for the Swing-up and Stabilizing Control of the Furuta Pendulum. Paper presented at the 2006 1ST IEEE Conference on Industrial Electronics and Applications.
    [26] Fantoni, I., Lozano, R., & Spong, M. W. (2000). Energy based control of the Pendubot. IEEE Transactions on Automatic Control, 45(4), 725-729.
    [27] Manabe, S. (1998). Coefficient Diagram Method. IFAC Proceedings Volumes, 31(21), 211-222. doi:https://doi.org/10.1016/S1474-6670(17)41080-9
    [28] Raspberry Pi DMA programming in C. (2021).取自:https://iosoft.blog/2020/05/25/-raspberry-pi-dma-programming/
    [29] 维基百科,自由的百科全書(2021)。背隙。圖取自:https://zh.wikipedia.org/w/-index.php?title=%E8%83%8C%E9%9A%99&oldid=65454398
    [30] Sanchez, E., Nuno, L. A., Ya-Chen, H., & Guanrong, C. (1998). Fuzzy PD scheme for underactuated robot swing-up control. Paper presented at the 1998 IEEE International Conference on Fuzzy Systems Proceedings.
    [31] Mingjun, Z., & Tzyh-Jong, T. (2000). Hybrid control of the Pendubot. IEEE/ASME Transactions on Mechatronics, 7(1), 79-86. doi:10.1109/3516.990890.
    [32] Zhao, D., & Yi, J. (2003). Swing up pendubot with a GA-tuned bang-bang controller.
    [33] Eom, M., & Chwa, D. (2015). Robust Swing-Up and Balancing Control Using a Nonlinear Disturbance Observer for the Pendubot System With Dynamic Friction. Ieee Transactions on Robotics, 31(2), 331-343. doi:10.1109/tro.2015.2402512.
    [34] Rudra, S., & Barai, R. K. (2016). Design of block backstepping based nonlinear state feedback controller for pendubot. Paper presented at the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI).
    [35] 黃翊婷與葉詠軒(2018)整理。魚骨圖。圖取自: http://acadeck.com/?p=511.
    [36] 張仁宗、邱俊榕、李建德與吳秉謙(2019)。以姿態估測技術結合虛擬實境控制滑車倒單擺之平衡。中國機械工程學會第三十六屆全國學術研討會論文集。臺北市:國立臺灣師範大學。

    無法下載圖示 校內:2026-07-21公開
    校外:2026-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE