| 研究生: |
蔡漢霖 Tsai, Han-Lin |
|---|---|
| 論文名稱: |
使用電位計與影像伺服於Pendubot之甩上與平衡穩定 Swing Up and Stabilizing Pendubot with Potentiometer and Visual Servo |
| 指導教授: |
張仁宗
Chang, Ren-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | Pendubot 、Visual Servo 、Coefficient Diagram Method |
| 外文關鍵詞: | Pendubot, Visual Servo, Coefficient Diagram Method |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在建立一套Pendubot倒單擺甩上切換與垂直穩定控制系統,使用電位計量測倒單擺甩上時之角度姿態,藉以判斷切換至影像伺服以達成倒單擺之平衡穩定。甩上控制以能量法設計實現,穩定控制則以PID結構結合係數圖法(Coefficient Diagram Method)進行參數設計,其中影像伺服藉由影像動態輪廓追蹤搭配多邊形擬合法估測倒單擺姿態,實時計算倒單擺擺角,並採用ARM-Based的STM32F4晶片與電腦進行串列傳輸即時估測角度。最後透過實體實驗以驗證本文之分析與設計結果。
This article aims to establish a Pendubot system with swing-up and stabilization control. Using potentiometer to measure the angle of the inverted pendulum when it is swinging up, and determine whether to switch to visual servo to achieve stability of the inverted pendulum. The swing-up control is designed and realized by the energy method. The stabilization control is designed by PID structure combined with the coefficient diagram method for parameter design. The visual servo uses dynamic image tracking and polygon fitting method to estimate the pendubot posture. At the same time, the angle is calculated, and then transmitted to the Cortex-M4 chip for control. Finally, experiments are conducted to verify the analysis and design results of this article.
[1] Lundberg, K. H., & Barton, T. W. (2010). History of Inverted-Pendulum Systems. IFAC Proceedings Volumes, 42(24), 131-135. doi:https://doi.org/10.3182/20091021-3-JP-2009.00025
[2] Furuta, K., Yamakita, M., & Kobayashi, S. (1992). Swing-up Control of Inverted Pendulum Using Pseudo-State Feedback. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 206(4), 263–269. doi:https://doi.org/10.1243/PIME_PROC_1992_206_341_02
[3] Roberge, J. K. (1960). The Mechanical Seal. Bachelor’s Thesis, Massachusetts Institute of Technology.
[4] He, B., Wang, S., & Liu, Y. (2019). Underactuated robotics: A review. International Journal of Advanced Robotic Systems, 16.
[5] Spong, M. W. (1994). Underactuated mechanical systems, Berlin, Heidelberg.
[6] Spong, M. W., & Block, D. J. (1995). The Pendubot: a mechatronic system for control research and education. Paper presented at the Proceedings of 1995 34th IEEE Conference on Decision and Control.
[7] Fantoni, I., Lozano, R., & Spong, M. W. (2000). Energy based control of the Pendubot. IEEE Transactions on Automatic Control, 45(4), 725-729.
[8] Xin, X., Kaneda, M., & Oki, T. (2002). The Swing Up Control for The Pendubot Based on Energy Control Approach. IFAC Proceedings Volumes, 35(1), 461-466. doi:https://doi.org/10.3182/20020721-6-ES-1901.00889
[9] Qian, D., Yi, J., & Zhao, D. (2007). Hierarchical Sliding Mode Control to Swing up a Pendubot. Paper presented at the 2007 American Control Conference.
[10] Xia, D., Chai, T., & Wang, L. (2014). Fuzzy Neural-Network Friction Compensation-Based Singularity Avoidance Energy Swing-Up to Nonequilibrium Unstable Position Control of Pendubot. Ieee Transactions on Control Systems Technology, 22(2), 690-705.
[11] Wu, J. D., Wang, Y. W., Ye, W. J., & Su, C. Y. (2019). Control strategy based on Fourier transformation and intelligent optimization for planar Pendubot. Information Sciences, 491, 279-288. doi:10.1016/j.ins.2019.03.051
[12] Nagarajan, U., Kantor, G., & Hollis, R. (2014). The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33(6), 917–930. https://doi.org/10.1177/0278364913509126
[13] Hehn, M., & Andrea, R. D. (2011). A flying inverted pendulum. Paper presented at the 2011 IEEE International Conference on Robotics and Automation.
[14] Hill, J., & Park, W. T. (1979). Real time control of a robot with a mobile camera. ISIR Proceedings Volumes, 9, 233-246.
[15] Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651-670. doi: https://doi.org/10.1109/70.538972
[16] Kragic, D., Christensen, H., & A, F. (2002). Survey on Visual Servoing for Manipulation. Comput. Vis. Act. Percept. Lab. Fiskartorpsv, 15.
[17] Ohyama, Y., Yamaura, T., & Ikebe, J. (1996). The Design of Visual Servo Controller for an Inverted Pendulum. IFAC Proceedings Volumes, 29(1), 2940-2945. doi:https://doi.org/10.1016/S1474-6670(17)58124-0
[18] Magana, M. E., & Holzapfel, F. (1998). Fuzzy-logic control of an inverted pendulum with vision feedback. IEEE Transactions on Education, 41(2), 165-170. doi: https://doi.org/10.1109/13.669727
[19] Stuflesser, M., & Brandner, M. (2008). Vision-Based Control of an Inverted Pendulum using Cascaded Particle Filters. Paper presented at the 2008 IEEE Instrumentation and Measurement Technology Conference.
[20] Brill, A., Frank, J. A., & Kapila, V. (2016). Visual servoing of an inverted pendulum on cart using a mounted smartphone. Paper presented at the 2016 American Control Conference (ACC).
[21] Espejel-Rivera, A., Ramos-Velasco, L. E., & Celikovský, S. (2005). Visual Servoing for An Underactuated Manipulator.
[22] Espinoza Quesada, E. S., & Ramos-Velasco, L. E. (2006). Visual Servoing for an Inverted Pendulum Using a Digital Signal Processor. Paper presented at the 2006 IEEE International Symposium on Signal Processing and Information Technology.
[23] Kolker, A., Winkler, A., Bdiwi, M., & Suchý, J. (2013). Robot visual servoing using the example of the inverted pendulum. Paper presented at the 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).
[24] Åström, K. J., & Furuta, K. (1996). Swinging Up a Pendulum by Energy Control. IFAC Proceedings Volumes, 29(1), 1919-1924. doi:https://doi.org/10.1016/S1474-6670(17)57951-3
[25] Ding, H., Li, Y., Mao, J., Wei, K., & Yang, L. (2006). Dynamic Switching Control for the Swing-up and Stabilizing Control of the Furuta Pendulum. Paper presented at the 2006 1ST IEEE Conference on Industrial Electronics and Applications.
[26] Fantoni, I., Lozano, R., & Spong, M. W. (2000). Energy based control of the Pendubot. IEEE Transactions on Automatic Control, 45(4), 725-729.
[27] Manabe, S. (1998). Coefficient Diagram Method. IFAC Proceedings Volumes, 31(21), 211-222. doi:https://doi.org/10.1016/S1474-6670(17)41080-9
[28] Raspberry Pi DMA programming in C. (2021).取自:https://iosoft.blog/2020/05/25/-raspberry-pi-dma-programming/
[29] 维基百科,自由的百科全書(2021)。背隙。圖取自:https://zh.wikipedia.org/w/-index.php?title=%E8%83%8C%E9%9A%99&oldid=65454398
[30] Sanchez, E., Nuno, L. A., Ya-Chen, H., & Guanrong, C. (1998). Fuzzy PD scheme for underactuated robot swing-up control. Paper presented at the 1998 IEEE International Conference on Fuzzy Systems Proceedings.
[31] Mingjun, Z., & Tzyh-Jong, T. (2000). Hybrid control of the Pendubot. IEEE/ASME Transactions on Mechatronics, 7(1), 79-86. doi:10.1109/3516.990890.
[32] Zhao, D., & Yi, J. (2003). Swing up pendubot with a GA-tuned bang-bang controller.
[33] Eom, M., & Chwa, D. (2015). Robust Swing-Up and Balancing Control Using a Nonlinear Disturbance Observer for the Pendubot System With Dynamic Friction. Ieee Transactions on Robotics, 31(2), 331-343. doi:10.1109/tro.2015.2402512.
[34] Rudra, S., & Barai, R. K. (2016). Design of block backstepping based nonlinear state feedback controller for pendubot. Paper presented at the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI).
[35] 黃翊婷與葉詠軒(2018)整理。魚骨圖。圖取自: http://acadeck.com/?p=511.
[36] 張仁宗、邱俊榕、李建德與吳秉謙(2019)。以姿態估測技術結合虛擬實境控制滑車倒單擺之平衡。中國機械工程學會第三十六屆全國學術研討會論文集。臺北市:國立臺灣師範大學。
校內:2026-07-21公開