簡易檢索 / 詳目顯示

研究生: 董茵茵
Tung, Yin-Yin
論文名稱: 利用探針性試藥mosapride評估年齡對大鼠CYP3A活性的影響
Assessing Aging-Effect on CYP3A Activity in Rats with Probe Substrate Mosapride
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: Aging-effectmosapride細胞色素3A探針有限採樣法
外文關鍵詞: Aging-effect, mosapride, CYP3A probe, limited sampling strategy
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:年齡會增加個體間差異性,並在藥物動力學扮演關鍵的角色,影響藥物的療效和安全性。CYP3A是肝臟和小腸中CYP450家族中最主要的代謝酵素,具有顯著的個體差異性。Mosapride為胃腸蠕動劑,主要經由CYP3A代謝,先前研究顯示,mosapride清除率與肝臟和腸道中CYP3A酵素含量具有高度相關性,反應出mosapride做為CYP3A體內探針性試藥的可行性。Rilpivirine在人體主要是經由CYP3A代謝來排除。
    研究目的:探討年齡與CYP3A活性關聯對其受質藥物動力學之影響,並進一步研究mosapride與受質藥物由體內清除之相關性以評估其預測CYP3A活性的應用。
    研究方法:本實驗使用6-48週的Sprague-Dawley大鼠,以靜脈注射同時投予mosapride和rilpivirine,並收集血液檢體至480分鐘後,以高效液相層析法分析血中濃度,再以分室模式估算其藥動參數。採樣後取出肝臟製備成microsome,以酵素免疫法分析CYP3A2總含量。
    研究結果:Mosapride和rilpivirine在大鼠的藥物動力學展現了二室模式的特點,不論週齡組別,在同週齡比較上,母鼠的藥物血中濃度曲線下面積(AUC)都高於公鼠。Mosapride和rilpivirine於公鼠的清除率在青春期時週達到最高,之後隨年齡的增加而顯著減少;而兩藥品在母鼠的清除率並不會隨年齡的關係顯著改變。Mosapride清除率和rilpivirine清除率相關性0.77具良好的相關性,且Mosapride的AUC可應用單點採樣法精確得到。
    研究結論:CYP3A受質藥物mosapride和rilpivirine在大鼠體內的清除率具性別差異。年齡對兩藥品在公鼠的清除率有顯著影響,但在母鼠CYP3A的活性並未隨年齡變化而改變。Mosapride清除率和肝臟CYP3A2含量之間的關係能以well-stirred clearance model描述。Mosapride清除率和rilpivirine的清除率具有良好的相關性,應證mosapride 作為大鼠體內CYP3A活性探針的可行性。

    Age of subjects can play a key role in variability in pharmacokinetics and thus efficacy and safety of drugs. CYP3A is one of the most important CYP450 subfamilies with great variation. The use of CYP3A phenotyping probes in drug therapy is of great importance. In this study, the age-related changes in the pharmacokinetics of a putative CYP3A phenotyping probe mosapride and a CYP3A substrate rilpivirine in rats were investigated.

    The disposition kinetics of mosapride and rilpivirine in rats displayed two-compartmental characteristics. Aging significantly affected the clearance of both drugs in male rats, but not in female rats. The clearance of CYP3A substrates mosapride and rilpivirine in rats was gender-dependent. The systemic exposure of both drugs in female rats was consistently greater than that in male rats. The clearance of mosapride and rilpivirine was maximal at 9-week-old in male rats and decreased after puberty. In female rats, the clearance of the drugs did not change significantly over the entire age range studied. The relationship between mosapride clearance and hepatic CYP3A2 content can be described by well-stirred clearance model. The correlation between mosapride clearance and rilpivirine clearance was relatively good with a correlation coefficient of 0.77. The systemic exposure of CYP3A probe mosapride in rats, in terms of AUC, can be precisely predicted using a single point plasma concentration.

    The clearance of CYP3A substrates mosapride and rilpivirine in rats was gender-dependent. Aging significantly affected the clearance of both drugs in male rats, but not in female rats. The correlation between mosapride clearance and rilpivirine clearance was relatively good, supporting the applicability of mosapride as an in vivo CYP3A probe in rats.

    中文摘要 I Extended Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 縮寫表 XI 第壹章 緒論 1 第一節 年齡對生理型態與藥物動力學的影響 1 一、 年齡對生理型態的影響 1 二、 年齡對藥物動力學的影響 5 第二節 藥物的代謝 9 第三節 細胞色素P450 ( Cytochrome P450 ) 10 一、 命名方式 10 二、 分佈及特性 11 三、 不同物種間CYP450差異 13 第四節 代謝酵素CYP3A 15 一、 種類 16 二、 CYP3A的個體差異性 16 三、 年齡對於CYP3A的影響 19 第五節 探針性試藥 21 一、 理想探針性試藥條件 21 二、 現行已知的CYP3A體內探針性試藥 23 第六節 Mosapride簡介 26 一、 物化性質 26 二、 藥理作用 26 三、 藥物動力學 27 四、 藥物交互作用 31 第七節 Rilpivirine簡介 33 一、 物化性質 33 二、 藥理作用 34 三、 藥動特性 34 四、 藥物交互作用 36 第貳章 研究目的 38 一、 年齡對mosapride與rilpivirine藥物動力學之影響 38 二、 CYP3A2在不同年齡與性別的大鼠肝臟微粒體之表現 38 三、 CYP3A探針性試藥mosapride的應用 38 第參章 實驗材料、儀器及方法 39 第一節 實驗材料 39 一、 實驗動物 39 二、 藥品與試劑 39 三、 動物實驗手術工具 41 第二節 實驗儀器 42 一、 紫外光/可見光分光光度計 42 二、 螢光分光光度計 42 三、 高效液相層析系統 42 四、 高通量藥物篩選自動化分析儀 42 第三節 實驗方法 43 一、 大白鼠靜脈注射給藥實驗 43 二、 大白鼠肝臟微粒體製備 48 三、 大白鼠肝臟微粒體之CYP3A2含量測定:酵素免疫分析法 49 第肆章 實驗結果 50 第一節 大鼠之生理學變化 50 一、 大鼠體重生長曲線與肝臟重量紀錄 50 第二節 Mosapride與rilpivirine之藥品動態研究 52 一、 年齡對mosapride與rilpivirine藥物動力學之影響 52 二、 性別對mosapride與rilpivirine藥物動力學之影響 58 三、 體重對mosapride與rilpivirine藥物動力學參數的影響 62 第三節 CYP3A2表現量對mosapride藥動的相關性 64 一、 肝臟微粒體CYP3A2含量表現:酵素免疫分析法 64 二、 CYP3A2表現含量與mosapride藥參數的相關性 64 第四節 CYP3A活性探針mosapride於rilpivirine藥動學之應用 67 一、 Mosapride清除率與 rilpivirine清除率的相關性 67 二、 單點血中濃度預測mosapride的AUC 70 三、 Mosapride單點血中濃度與rilpivirine清除率之相關性 73 第伍章 討論 76 第一節 大鼠之生理學變化 76 一、 大鼠生長曲線與肝臟重量紀錄 76 第二節 Mosapride與rilpivirine之藥品動態研究 78 一、 年齡對mosapride與rilpivirine藥物動力學之影響 78 二、 性別對mosapride與rilpivirne藥物動力學之影響 79 三、 體重對mosapride與rilpivirine藥物動力學的相關性 79 第三節 肝臟CYP3A2表現量和mosapride藥動參數之相關性 81 第四節 CYP3A活性探針mosapride於rilpivirine藥動學之應用 82 一、 Mosapride清除率與rilpivirine清除率的相關性 82 二、 單點血中濃度預測mosapride的AUC 82 三、 Mosapride單點血中濃度與rilpivirine清除率之相關性 83 第陸章 結論和未來方向 84 參考文獻 86

    Anzenbacher, P., and Anzenbacherova, E. (2001). Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58, 737-747.
    Bailey, S.A., Zidell, R.H., and Perry, R.W. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol 32, 448-466.
    Berg, U.B. (2006). Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol Dial Transplant 21, 2577-2582.
    Bjornsson, T.D., Callaghan, J.T., Einolf, H.J., Fischer, V., Gan, L., Grimm, S., Kao, J., King, S.P., Miwa, G., Ni, L., et al. (2003). The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31, 815-832.
    Burugula, L., Pilli, N.R., Makula, A., Lodagala, D.S., and Kandhagatla, R. (2013). Liquid chromatography-tandem mass spectrometric assay for the non-nucleoside reverse transcriptase inhibitor rilpivirine in human plasma. Biomed Chromatogr 27, 172-178.
    Butler, J.M., and Begg, E.J. (2008). Free drug metabolic clearance in elderly people. Clin Pharmacokinet 47, 297-321.
    Carlile, S.I., and Lacko, A.G. (1981). Strain differences in the age related changes of rat lipoprotein metabolism. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 70, 753-758.
    Cogger, V.C., and Le Couteur, D.G. (2009). Fenestrations in the Liver Sinusoidal Endothelial Cell. In The Liver (John Wiley & Sons, Ltd), pp. 389-406.
    Cooper, K.O., Reik, L.M., Jayyosi, Z., Bandiera, S., Kelley, M., Ryan, D.E., Daniel, R., McCluskey, S.A., Levin, W., and Thomas, P.E. (1993). Regulation of two members of the steroid-inducible cytochrome P450 subfamily (3A) in rats. Arch Biochem Biophys 301, 345-354.
    Cotreau, M.M., von Moltke, L.L., and Greenblatt, D.J. (2005). The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44, 33-60.
    Durdagi, S., Randall, T., Duff, H.J., Chamberlin, A., and Noskov, S.Y. (2014). Rehabilitating drug-induced long-QT promoters: in-silico design of hERG-neutral cisapride analogues with retained pharmacological activity. BMC Pharmacol Toxicol 15, 14.
    Evans, M.A., Triggs, E.J., Cheung, M., Broe, G.A., and Creasey, H. (1981). Gastric emptying rate in the elderly: implications for drug therapy. J Am Geriatr Soc 29, 201-205.
    Floyd, M.D., Gervasini, G., Masica, A.L., Mayo, G., George, A.L., Jr., Bhat, K., Kim, R.B., and Wilkinson, G.R. (2003). Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 13, 595-606.
    Fuhr, U., Jetter, A., and Kirchheiner, J. (2007). Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach. Clin Pharmacol Ther 81, 270-283.
    Guengerich, F.P. (2008). Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21, 70-83.
    Gurley, B.J., Gardner, S.F., Hubbard, M.A., Williams, D.K., Gentry, W.B., Cui, Y., and Ang, C.Y. (2005). Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John's wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22, 525-539.
    Hajjar, E.R., Gray, S.L., Guay, D.R.P., Starner, C.I., Handler, S.M., and Hanlon, J.T. (2011). Chapter 11. Geriatrics. In Pharmacotherapy: A Pathophysiologic Approach, 8e, J.T. DiPiro, R.L. Talbert, G.C. Yee, G.R. Matzke, B.G. Wells, and L.M. Posey, eds. (New York, NY: The McGraw-Hill Companies).
    He, P., Court, M.H., Greenblatt, D.J., and Von Moltke, L.L. (2005). Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77, 373-387.
    Hilmer, S.N., and Ford, G.A. (2009). Chapter 8. General Principles of Pharmacology. In Hazzard's Geriatric Medicine and Gerontology, 6e, J.B. Halter, J.G. Ouslander, M.E. Tinetti, S. Studenski, K.P. High, and S. Asthana, eds. (New York, NY: The McGraw-Hill Companies).
    Hilmer, S.N., Shenfield, G.M., and Le Couteur, D.G. (2005). Clinical implications of changes in hepatic drug metabolism in older people. Ther Clin Risk Manag 1, 151-156.
    Hunt, C.M., Westerkam, W.R., Stave, G.M., and Wilson, J.A. (1992). Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Ageing Dev 64, 189-199.
    Imaoka, S., Terano, Y., and Funae, Y. (1988). Constitutive testosterone 6 beta-hydroxylase in rat liver. J Biochem 104, 481-487.
    Ince, I. (2013). Maturation of cytochrome P450 3A mediated drug metabolism: Towards individualized dosing in children (Erasmus University Rotterdam).
    Ishii, Y., Koba, H., Kinoshita, K., Oizaki, T., Iwamoto, Y., Takeda, S., Miyauchi, Y., Nishimura, Y., Egoshi, N., Taura, F., et al. (2014). Alteration of the function of the UDP-glucuronosyltransferase 1A subfamily by cytochrome P450 3A4: different susceptibility for UGT isoforms and UGT1A1/7 variants. Drug Metab Dispos 42, 229-238.
    Katoh, T., Saitoh, H., Ohno, N., Tateno, M., Nakamura, T., Dendo, I., Kobayashi, S., and Nagasawa, K. (2003). Drug interaction between mosapride and erythromycin without electrocardiographic changes. Jpn Heart J 44, 225-234.
    Kawase, A., Ito, A., Yamada, A., and Iwaki, M. (2015). Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. Eur J Drug Metab Pharmacokinet 40, 239-244.
    Kim, R.B., Leake, B., Cvetkovic, M., Roden, M.M., Nadeau, J., Walubo, A., and Wilkinson, G.R. (1999). Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther 291, 1204-1209.
    Kim, Y.H., Bae, Y.J., Kim, H.S., Cha, H.J., Yun, J.S., Shin, J.S., Seong, W.K., Lee, Y.M., and Han, K.M. (2015). Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay. Biomol Ther (Seoul) 23, 486-492.
    Klotz, U. (2009). Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41, 67-76.
    Lade, J.M., Avery, L.B., and Bumpus, N.N. (2013). Human Biotransformation of the Nonnucleoside Reverse Transcriptase Inhibitor Rilpivirine and a Cross-Species Metabolism Comparison. Antimicrob Agents Chemother 57, 5067-5079.
    Larson, A.M. (2007). Acetaminophen hepatotoxicity. Clin Liver Dis 11, 525-548, vi.
    Le Couteur, D.G., and McLean, A.J. (1998). The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis. Clin Pharmacokinet 34, 359-373.
    Leakey, J.A., Cunny, H.C., Bazare, J., Jr., Webb, P.J., Lipscomb, J.C., Slikker, W., Jr., Feuers, R.J., Duffy, P.H., and Hart, R.W. (1989). Effects of aging and caloric restriction on hepatic drug metabolizing enzymes in the Fischer 344 rat. II: Effects on conjugating enzymes. Mech Ageing Dev 48, 157-166.
    Lee, L.S., Bertino, J.S., Jr., and Nafziger, A.N. (2006). Limited sampling models for oral midazolam: midazolam plasma concentrations, not the ratio of 1-hydroxymidazolam to midazolam plasma concentrations, accurately predicts AUC as a biomarker of CYP3A activity. J Clin Pharmacol 46, 229-234.
    Li, W., Zeng, S., Yu, L.S., and Zhou, Q. (2013). Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag 9, 259-271.
    Lin, J.H., Chiba, M., Chen, I.W., Nishime, J.A., deLuna, F.A., Yamazaki, M., and Lin, Y.J. (1999). Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction. Drug Metab Dispos 27, 1187-1193.
    Lindeman, R.D., Tobin, J., and Shock, N.W. (1985). Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33, 278-285.
    Lowry, J.A., Kearns, G.L., Abdel-Rahman, S.M., Nafziger, A.N., Khan, I.S., Kashuba, A.D., Schuetz, E.G., Bertino, J.S., Jr., van den Anker, J.N., and Leeder, J.S. (2003). Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther 73, 209-222.
    Mahnke, A., Strotkamp, D., Roos, P.H., Hanstein, W.G., Chabot, G.G., and Nef, P. (1997). Expression and inducibility of cytochrome P450 3A9 (CYP3A9) and other members of the CYP3A subfamily in rat liver. Arch Biochem Biophys 337, 62-68.
    Mandlekar, S.V., Rose, A.V., Cornelius, G., Sleczka, B., Caporuscio, C., Wang, J., and Marathe, P.H. (2007). Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 37, 923-942.
    Martignoni, M., Groothuis, G.M., and de Kanter, R. (2006). Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2, 875-894.
    McLean, A.J., Cogger, V.C., Chong, G.C., Warren, A., Markus, A.M., Dahlstrom, J.E., and Le Couteur, D.G. (2003). Age-related pseudocapillarization of the human liver. J Pathol 200, 112-117.
    Mitchell, S.J., Kane, A.E., and Hilmer, S.N. (2011). Age-related changes in the hepatic pharmacology and toxicology of paracetamol. Curr Gerontol Geriatr Res 2011, 624156.
    Mueller, S.C., and Drewelow, B. (2013). Evaluation of limited sampling models for prediction of oral midazolam AUC for CYP3A phenotyping and drug interaction studies. Eur J Clin Pharmacol 69, 1127-1134.
    Murakami, T., Sato, A., Inatani, M., Sakurai, H., Yumoto, R., Nagai, J., and Takano, M. (2004). Effect of neonatal exposure of 17beta-estradiol and tamoxifen on hepatic CYP3A activity at developmental periods in rats. Drug Metab Pharmacokinet 19, 96-102.
    Mushiroda, T., Douya, R., Takahara, E., and Nagata, O. (2000). The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab Dispos 28, 1231-1237.
    Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxman, D.J., Waterman, M.R., Gotoh, O., Coon, M.J., Estabrook, R.W., et al. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1-42.
    Paine, M.F., Hart, H.L., Ludington, S.S., Haining, R.L., Rettie, A.E., and Zeldin, D.C. (2006). The human intestinal cytochrome P450 "pie". Drug Metab Dispos 34, 880-886.
    Pearce, R.E., Gotschall, R.R., Kearns, G.L., and Leeder, J.S. (2001). Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metab Dispos 29, 1548-1554.
    Piao, Y., Liu, Y., and Xie, X. (2013). Change Trends of Organ Weight Background Data in Sprague Dawley Rats at Different Ages. J Toxicol Pathol 26, 29-34.
    Sakashita, M., Mizuki, Y., Hashizume, T., Yamaguchi, T., Miyazaki, H., and Sekine, Y. (1993). Pharmacokinetics of the gastrokinetic agent mosapride citrate after intravenous and oral administrations in rats. Arzneimittel-Forschung 43, 859-863.
    Santa Maria, C., and Machado, A. (1988). Changes in some hepatic enzyme activities related to phase II drug metabolism in male and female rats as a function of age. Mech Ageing Dev 44, 115-125.
    Schmucker, D.L. (2005). Age-related changes in liver structure and function: Implications for disease ? Exp Gerontol 40, 650-659.
    Schwartz, J.B. (2007). The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther 82, 87-96.
    Sengupta, P. (2013). The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med 4, 624-630.
    Sharma, M., and Saravolatz, L.D. (2013). Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. J Antimicrob Chemother 68, 250-256.
    Simon-Santamaria, J., Malovic, I., Warren, A., Oteiza, A., Le Couteur, D., Smedsrod, B., McCourt, P., and Sorensen, K.K. (2010). Age-related changes in scavenger receptor-mediated endocytosis in rat liver sinusoidal endothelial cells. The journals of gerontology Series A, Biological sciences and medical sciences 65, 951-960.
    Sotaniemi, E.A., Arranto, A.J., Pelkonen, O., and Pasanen, M. (1997). Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther 61, 331-339.
    Streetman, D.S., Bertino, J.S., Jr., and Nafziger, A.N. (2000). Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10, 187-216.
    Sun, X., Niu, L., Li, X., Lu, X., and Li, F. (2009). Characterization of metabolic profile of mosapride citrate in rat and identification of two new metabolites: Mosapride N-oxide and morpholine ring-opened mosapride by UPLC-ESI-MS/MS. J Pharm Biomed Anal 50, 27-34.
    Tack, J., Camilleri, M., Chang, L., Chey, W.D., Galligan, J.J., Lacy, B.E., Muller-Lissner, S., Quigley, E.M., Schuurkes, J., De Maeyer, J.H., et al. (2012). Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders. Aliment Pharmacol Ther 35, 745-767.
    Thummel, K.E., Shen, D.D., Podoll, T.D., Kunze, K.L., Trager, W.F., Hartwell, P.S., Raisys, V.A., Marsh, C.L., McVicar, J.P., Barr, D.M., et al. (1994). Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271, 549-556.
    Tomlinson, E.S., Maggs, J.L., Park, B.K., and Back, D.J. (1997). Dexamethasone metabolism in vitro: species differences. J Steroid Biochem Mol Biol 62, 345-352.
    Tsunoda, S.M., Velez, R.L., von Moltke, L.L., and Greenblatt, D.J. (1999). Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 66, 461-471.
    Turnheim, K. (2005). Pharmacokinetic dosage guidelines for elderly subjects. Expert Opin Drug Metab Toxicol 1, 33-48.
    Vyskocilova, E., Szotakova, B., Skalova, L., Bartikova, H., Hlavacova, J., and Bousova, I. (2013). Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. Biomed Res Int 2013, 408573.
    Warrington, J.S., Greenblatt, D.J., and von Moltke, L.L. (2004a). Age-related differences in CYP3A expression and activity in the rat liver, intestine, and kidney. J Pharmacol Exp Ther 309, 720-729.
    Warrington, J.S., Greenblatt, D.J., and von Moltke, L.L. (2004b). The effect of age on P-glycoprotein expression and function in the Fischer-344 rat. J Pharmacol Exp Ther 309, 730-736.
    Waxman, D., and Chang, T.H. (2005). Hormonal Regulation of Liver Cytochrome P450 Enzymes. In Cytochrome P450, P. Ortiz de Montellano, ed. (Springer US), pp. 347-376.
    Weiss, J., and Haefeli, W.E. (2013). Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int J Antimicrob Agents 41, 484-487.
    Wilkinson, G.R. (1996). Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 24, 475-490.
    Williams, J.A., Hyland, R., Jones, B.C., Smith, D.A., Hurst, S., Goosen, T.C., Peterkin, V., Koup, J.R., and Ball, S.E. (2004). Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32, 1201-1208.
    Wright, M.C., Edwards, R.J., Pimenta, M., Ribeiro, V., Ratra, G.S., Lechner, M.C., and Paine, A.J. (1997). Developmental changes in the constitutive and inducible expression of cytochrome P450 3A2. Biochem Pharmacol 54, 841-846.
    Wynne, H.A., Cope, L.H., James, O.F., Rawlins, M.D., and Woodhouse, K.W. (1989a). The effect of age and frailty upon acetanilide clearance in man. Age and ageing 18, 415-418.
    Wynne, H.A., Cope, L.H., Mutch, E., Rawlins, M.D., Woodhouse, K.W., and James, O.F. (1989b). The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology (Baltimore, Md) 9, 297-301.
    Yun, K.U., Oh, S.J., Oh, J.M., Kang, K.W., Myung, C.S., Song, G.Y., Kim, B.H., and Kim, S.K. (2010). Age-related changes in hepatic expression and activity of cytochrome P450 in male rats. Arch Toxicol 84, 939-946.
    Zhang, Y.K., Saupe, K.W., and Klaassen, C.D. (2010). Energy restriction does not compensate for the reduced expression of hepatic drug-processing genes in mice with aging. Drug Metab Dispos 38, 1122-1131.
    Zhou, S.F. (2008). Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Current drug metabolism 9, 310-322.
    官玫仙 (2007). Cisapride作為大白鼠體內CYP3A活性探針性試藥之可行性.
    國立成功大學臨床藥學與藥物科技所95級碩士論文
    張雅雯 (2008). Mosapride作為大白鼠體內CYP3A活性探針性試藥之可行性. 國立成功大學臨床藥學所96級碩士論文.
    魏敬云 (2009). 有限採樣法預測 CYP3A 探針藥物mosapride 在大鼠體內之濃度曲線下面積. 國立成功大學臨床藥學所97級碩士論文.
    任沛瑄 (2010). 用Mosapride作為大鼠肝臟CYP3A活性探針:與參考探針Midazolam之比較. 國立成功大學臨床藥學與藥物科技所98級碩士論文
    陳玟翰 (2013). 用mosapride作為大鼠肝臟CYP3A活性探針:應用於rilpivirine藥物動力學. 國立成功大學臨床藥學與藥物科技所101級碩士論文
    杜建龍 (2013). 用Mosapride作為大鼠肝臟CYP3A活性探針:應用於rivaroxaban藥物動力學.國立成功大學臨床藥學與藥物科技所101級碩士論文

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE