| 研究生: |
黃奕嘉 Waung, I-Chia |
|---|---|
| 論文名稱: |
在冷原子中應用自發四波混頻產生雙光子研究 Biphoton generation using spontaneous four-wave mixing in cold atoms |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 電磁波引發透明 、自發四波混頻 、史托克光 、反史托克光 、雙光子 |
| 外文關鍵詞: | Electromagnetically induced transparency, spontaneous four-wave mixing, Stoke, anti-Stoke, biphoton |
| 相關次數: | 點閱:121 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們展示一種在冷原子中基於電磁波引發透明的自發四波混頻,並揭露其量子特性。在我們的實驗中,具有時間關聯性的史托克光與反史托克光被同時產生,當史托克光被單光子偵測器偵測到時,反史托克光會在關聯性時間內出現,這段關聯性時間能夠由電磁波引發透明結構控制,我們會使用二階格勞伯相關函數來分析雙光子的時間關聯性。在我們的實驗結果中,最好的訊號背景比能夠達到8,違反了柯西-史瓦茲不等式超過20 倍以上,充分的展現它的量子特性。
In this thesis we demonstrate a kind of electromagnetically-induced-transparencybased (EIT-based) spontaneous four-wave mixing (SFWM) in cold atoms and reveal some quantum characteristics. Two time-correlated photons, Stoke and anti-Stoke photons (or biphoton), are generated simultaneously in our experiment. Once Stoke photon is detected by the single-photon detector, the other photon, anti-Stoke, will appear within the correlated time, which is controllable by EIT structure, forming a heralded twophoton scheme. In our analysis we employ Glauber second-order cross-correlation function to describe its time-correlated property. Among them, the best signal-to-background ratio (SBR) is around 8 in the thesis, which violates Cauchy-Schwarz inequality by more than 20 folds, and it provides sufficient evidence that the results belong to quantum region.
[1] Ou, Z. Y., and Y. J. Lu. ”Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons."Physical Review Letters 83.13 (1999): 2556.
[2] Walborn, S. P., et al. ”Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion.” Physical Review A 69.2 (2004): 023811.
[3] Fekete, Julia, et al. ”Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks.” Physical review letters 110.22 (2013): 220502.
[4] Rambach, Markus, et al. ”Sub-megahertz linewidth single photon source.”APL Photonics 1.9 (2016): 096101.
[5] Rieländer, Daniel, et al. ”Cavity enhanced telecom heralded single photons for spinwave solid state quantum memories.” New Journal of Physics 18.12 (2016): 123013.
[6] Tsai, Pin-Ju, and Ying-Cheng Chen. ”Ultrabright, narrow-band photon-pair source for atomic quantum memories.” Quantum Science and Technology 3.3 (2018): 034005.
[7] Niizeki, Kazuya, et al. ”Ultrabright narrow-band telecom two-photon source for longdistance quantum communication.” Applied Physics Express 11.4 (2018): 042801.
[8] Slattery, Oliver, et al. ”Background and review of cavity-enhanced spontaneous parametric down-conversion.” Journal of Research of the National Institute of Standards and Technology 124 (2019): 1.
[9] Liu, Jianji, et al. ”Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories.” APL Photonics 5.6 (2020): 066105.
[10] Shu, Chi, et al. ”Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell.” Nature communications 7.1 (2016): 1-5.
[11] Zhu, Lingbang, et al. ”Bright narrowband biphoton generation from a hot rubidium atomic vapor cell.” Applied Physics Letters 110.16 (2017): 161101.
[12] Mika, Jaromír, and Lukáš Slodička. ”High nonclassical correlations of large-bandwidth photon pairs generated in warm atomic vapor.” Journal of Physics B: Atomic, Molecular and Optical Physics 53.14 (2020): 145501.
[13] Jeong, Taek, and Han Seb Moon. ”Temporal-and spectral-property measurements of narrowband photon pairs from warm double-Λ-type atomic ensemble.” Optics Express 28.3 (2020): 3985-3994.
[14] Hsu, Chia-Yu, et al. ”Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme.” Optics Express 29.3 (2021): 4632-4644.
[15] Li, Kangkang, et al. ”Shaping Temporal Correlation of Biphotons in a Hot Atomic Ensemble.”Advanced Photonics Research 2.8 (2021): 2100073.
[16] Chen, Jia-Mou, et al. ”Room-temperature biphoton source with a spectral brightness near the ultimate limit.” Physical Review Research 4.2 (2022): 023132.
[17] Wang, Chengyuan, Chung-Hyun Lee, and Yoon-Ho Kim. ”Generation and characterization of position-momentum entangled photon pairs in a hot atomic gas cell.” Optics Express 27.24 (2019): 34611-34617.
[18] Davidson, Omri, et al. ”Bright multiplexed source of indistinguishable single photons with tunable GHz-bandwidth at room temperature.” New Journal of Physics 23.7 (2021): 073050.
[19] Jeong, Hansol, et al. ”Doppler-broadened four-wave mixing under double-resonance optical pumping in the 5S 1/2–5P 3/2–4D 5/2 transition of warm 87 Rb atoms.” Optics Express 29.26 (2021): 42384-42393.
[20] Park, Jiho, and Han Seb Moon. ”Generation of a bright four-photon entangled state from a warm atomic ensemble via inherent polarization entanglement.” Applied Physics Letters 120.2 (2022): 024001.
[21] Du, Shengwang, et al. ”Four-wave mixing and biphoton generation in a two-level system.”Physical review letters 98.5 (2007): 053601.
[22] Zhao, Luwei, et al. ”Photon pairs with coherence time exceeding 1 μs.” Optica 1.2 (2014): 84-88.
[23] Han, Zhiguang, et al. ”Coherence time limit of the biphotons generated in a dense cold atomcloud.” Scientific Reports 5.1 (2015): 1-5.
[24] Farrera, Pau, et al. ”Generation of single photons with highly tunable wave shape from a cold atomic ensemble.” Nature communications 7.1 (2016): 1-6.
[25] Wang, Yu-Sheng, et al. ”Temporally-ultralong biphotons with a linewidth of 50 kHz." arXiv preprint arXiv:2205.13778 (2022).
[26] Harris, Stephen E., J. E. Field, and A. Imamoğlu. ”Nonlinear optical processes using electromagnetically induced transparency.” Physical Review Letters 64.10 (1990):1107.
[27] Jackson, John David. ”Classical electrodynamics.” (1999): 841-842.
[28] Scully, Marlan O., and M. Suhail Zubairy. ”Quantum optics.” (1999): 648-648.
[29] Tseng, Jia-Cheng. ”Theoretical study on photon generation based on stimulated Raman scattering” (2020)
[30] Lin, Meng-Jung. ”Generation Of Correlated Paired Photons Using Doubled-Λ Fourwave Mixing” (2021)
[31] Yang, Chih-Min. ”Narrowband Stoke Photons Generation Based on DLCZ Protocol”(2021)
[32] Cheng, Chin-Yao. ”Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics” (2021)