簡易檢索 / 詳目顯示

研究生: 黃奕嘉
Waung, I-Chia
論文名稱: 在冷原子中應用自發四波混頻產生雙光子研究
Biphoton generation using spontaneous four-wave mixing in cold atoms
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 電磁波引發透明自發四波混頻史托克光反史托克光雙光子
外文關鍵詞: Electromagnetically induced transparency, spontaneous four-wave mixing, Stoke, anti-Stoke, biphoton
相關次數: 點閱:121下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們展示一種在冷原子中基於電磁波引發透明的自發四波混頻,並揭露其量子特性。在我們的實驗中,具有時間關聯性的史托克光與反史托克光被同時產生,當史托克光被單光子偵測器偵測到時,反史托克光會在關聯性時間內出現,這段關聯性時間能夠由電磁波引發透明結構控制,我們會使用二階格勞伯相關函數來分析雙光子的時間關聯性。在我們的實驗結果中,最好的訊號背景比能夠達到8,違反了柯西-史瓦茲不等式超過20 倍以上,充分的展現它的量子特性。

    In this thesis we demonstrate a kind of electromagnetically-induced-transparencybased (EIT-based) spontaneous four-wave mixing (SFWM) in cold atoms and reveal some quantum characteristics. Two time-correlated photons, Stoke and anti-Stoke photons (or biphoton), are generated simultaneously in our experiment. Once Stoke photon is detected by the single-photon detector, the other photon, anti-Stoke, will appear within the correlated time, which is controllable by EIT structure, forming a heralded twophoton scheme. In our analysis we employ Glauber second-order cross-correlation function to describe its time-correlated property. Among them, the best signal-to-background ratio (SBR) is around 8 in the thesis, which violates Cauchy-Schwarz inequality by more than 20 folds, and it provides sufficient evidence that the results belong to quantum region.

    摘要i Abstract ii 誌謝 vi 目錄 vii 圖片 ix Chapter 1. 簡介 1 Chapter 2. 電磁波引發透明 2 2.1 電磁波引發透明 2 2.2 光學布拉赫方程式 4 2.2.1. 密度矩陣 4 2.2.2. 運動方程式 5 2.2.3. 穩態解 9 2.3 馬克士威-薛丁格方程式 10 2.4 慢光效應 13 Chapter 3. 自發四波混頻產生關連性光子對 14 3.1 理論解析解 14 3.1.1. 哈密頓算符與原子算符 14 3.1.2. 海森堡-朗茲萬方程式 17 3.1.3. 馬克士威-薛丁格方程式 19 3.1.4. 海森堡-朗茲萬方程式的解 19 3.1.5. 馬克士威-薛丁格方程式的解 24 3.2 史托克光與反史托克光的產生率 30 3.2.1. 產生率 30 3.2.2. 史托克光的產生率 31 3.2.3. 反史托克光的產生率 39 3.3 格勞伯二階相關函數 40 Chapter 4. 實驗結果 43 4.1 實驗架設 43 4.1.1. 能階選擇 43 4.1.2. 光路架設 44 4.1.3. 時序設計 46 4.2 結果與討論 47 4.2.1. OD=6 的雙光子 48 4.2.2. OD=11 的雙光子 63 4.2.3. 討論 75 Chapter 5. 結論與未來展望 77 Bibliography 78

    [1] Ou, Z. Y., and Y. J. Lu. ”Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons."Physical Review Letters 83.13 (1999): 2556.
    [2] Walborn, S. P., et al. ”Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion.” Physical Review A 69.2 (2004): 023811.
    [3] Fekete, Julia, et al. ”Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks.” Physical review letters 110.22 (2013): 220502.
    [4] Rambach, Markus, et al. ”Sub-megahertz linewidth single photon source.”APL Photonics 1.9 (2016): 096101.
    [5] Rieländer, Daniel, et al. ”Cavity enhanced telecom heralded single photons for spinwave solid state quantum memories.” New Journal of Physics 18.12 (2016): 123013.
    [6] Tsai, Pin-Ju, and Ying-Cheng Chen. ”Ultrabright, narrow-band photon-pair source for atomic quantum memories.” Quantum Science and Technology 3.3 (2018): 034005.
    [7] Niizeki, Kazuya, et al. ”Ultrabright narrow-band telecom two-photon source for longdistance quantum communication.” Applied Physics Express 11.4 (2018): 042801.
    [8] Slattery, Oliver, et al. ”Background and review of cavity-enhanced spontaneous parametric down-conversion.” Journal of Research of the National Institute of Standards and Technology 124 (2019): 1.
    [9] Liu, Jianji, et al. ”Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories.” APL Photonics 5.6 (2020): 066105.
    [10] Shu, Chi, et al. ”Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell.” Nature communications 7.1 (2016): 1-5.
    [11] Zhu, Lingbang, et al. ”Bright narrowband biphoton generation from a hot rubidium atomic vapor cell.” Applied Physics Letters 110.16 (2017): 161101.
    [12] Mika, Jaromír, and Lukáš Slodička. ”High nonclassical correlations of large-bandwidth photon pairs generated in warm atomic vapor.” Journal of Physics B: Atomic, Molecular and Optical Physics 53.14 (2020): 145501.
    [13] Jeong, Taek, and Han Seb Moon. ”Temporal-and spectral-property measurements of narrowband photon pairs from warm double-Λ-type atomic ensemble.” Optics Express 28.3 (2020): 3985-3994.
    [14] Hsu, Chia-Yu, et al. ”Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme.” Optics Express 29.3 (2021): 4632-4644.
    [15] Li, Kangkang, et al. ”Shaping Temporal Correlation of Biphotons in a Hot Atomic Ensemble.”Advanced Photonics Research 2.8 (2021): 2100073.
    [16] Chen, Jia-Mou, et al. ”Room-temperature biphoton source with a spectral brightness near the ultimate limit.” Physical Review Research 4.2 (2022): 023132.
    [17] Wang, Chengyuan, Chung-Hyun Lee, and Yoon-Ho Kim. ”Generation and characterization of position-momentum entangled photon pairs in a hot atomic gas cell.” Optics Express 27.24 (2019): 34611-34617.
    [18] Davidson, Omri, et al. ”Bright multiplexed source of indistinguishable single photons with tunable GHz-bandwidth at room temperature.” New Journal of Physics 23.7 (2021): 073050.
    [19] Jeong, Hansol, et al. ”Doppler-broadened four-wave mixing under double-resonance optical pumping in the 5S 1/2–5P 3/2–4D 5/2 transition of warm 87 Rb atoms.” Optics Express 29.26 (2021): 42384-42393.
    [20] Park, Jiho, and Han Seb Moon. ”Generation of a bright four-photon entangled state from a warm atomic ensemble via inherent polarization entanglement.” Applied Physics Letters 120.2 (2022): 024001.
    [21] Du, Shengwang, et al. ”Four-wave mixing and biphoton generation in a two-level system.”Physical review letters 98.5 (2007): 053601.
    [22] Zhao, Luwei, et al. ”Photon pairs with coherence time exceeding 1 μs.” Optica 1.2 (2014): 84-88.
    [23] Han, Zhiguang, et al. ”Coherence time limit of the biphotons generated in a dense cold atomcloud.” Scientific Reports 5.1 (2015): 1-5.
    [24] Farrera, Pau, et al. ”Generation of single photons with highly tunable wave shape from a cold atomic ensemble.” Nature communications 7.1 (2016): 1-6.
    [25] Wang, Yu-Sheng, et al. ”Temporally-ultralong biphotons with a linewidth of 50 kHz." arXiv preprint arXiv:2205.13778 (2022).
    [26] Harris, Stephen E., J. E. Field, and A. Imamoğlu. ”Nonlinear optical processes using electromagnetically induced transparency.” Physical Review Letters 64.10 (1990):1107.
    [27] Jackson, John David. ”Classical electrodynamics.” (1999): 841-842.
    [28] Scully, Marlan O., and M. Suhail Zubairy. ”Quantum optics.” (1999): 648-648.
    [29] Tseng, Jia-Cheng. ”Theoretical study on photon generation based on stimulated Raman scattering” (2020)
    [30] Lin, Meng-Jung. ”Generation Of Correlated Paired Photons Using Doubled-Λ Fourwave Mixing” (2021)
    [31] Yang, Chih-Min. ”Narrowband Stoke Photons Generation Based on DLCZ Protocol”(2021)
    [32] Cheng, Chin-Yao. ”Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics” (2021)

    下載圖示 校內:立即公開
    校外:2025-08-17公開
    QR CODE