| 研究生: |
楊鈤笙 Yang, Jih-Sheng |
|---|---|
| 論文名稱: |
表面型態與界面能帶調控增進奈米異質結構光陽極分解水效能之研究 Morphology and Interfacial Energetics Controls for Nanostructured Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 224 |
| 中文關鍵詞: | 金屬氧化物奈米結構 、光電化學水分解 、異質界面奈米結構 、二氧化鈦 、氧化鐵 、四氧化釩鉍 、中性電解液 、載子分離 |
| 外文關鍵詞: | Metal oxide nanostructure, Photoelectrochemical water splitting, Heterojunction nanostructures, TiO2, Fe2O3, BiVO4, Neutral electrolyte, Charge separation |
| 相關次數: | 點閱:134 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題主要是致力於設計及成長多層的(type II能帶型態)異質界面奈米結構光陽極應用於高效能光電化學水分解之研究。我們以二氧化鈦 (TiO2)光觸媒材料當作是主要的研究主軸。利用調控表面型態以及界面能量成長雙層的type II能帶型態異質界面奈米樹陣列光陽極。此光陽極的光電化學表現很成功的展現出能夠逼近金紅石二氧化鈦的理論光電流密度。再者,我們更進一步去挑戰多數可見光驅動光觸媒的載子傳輸入徑很短的普遍缺陷。n型氧化鐵及N型二氧化鈦被我們選用及製備成簡單的平面異質界面光陽極。雖然在材料相互接觸前之氧化鐵的傳導帶能帶位置略正於二氧化鈦,但當兩材料成長接觸時其能帶有適當的接合,此時,相較於氧化鐵光陽極,type II能帶型態的氧化鐵/二氧化鈦異質界面光陽極展現出顯著提升的光電化學水分解成果。有鑑於上述所完成的研究成果,我們更進一步設計成長出於低偏壓驅動下能使載子完全分離的四氧化釩鉍/氧化鋅異質界面奈米樹陣列光陽極,此光陽極的載子傳輸機制是受內建電場驅動並非載子擴散移動。更進一步,我們結合了光吸收及電洞傳輸入徑方向相反的的優點,用以克服本質的四氧化釩鉍載子傳輸緩慢的缺陷。因此四氧化釩鉍/氧化鋅異質界面奈米樹陣列光陽極在光電化學水分解量測中能有相當卓越的表現。
本研究的第一部分中,我們考慮材料表面型態以及界面能量等因素去成長三維的核-殼二氧化鈦奈米結構陣列光陽極。核心部份是金紅石二氧化鈦奈米樹陣列,殼的部分是先由金紅石二氧化鈦奈米顆粒(RNP)包覆於核心上後再成長銳鈦礦二氧化鈦奈米顆粒(ANP)層於表面上。TiO2 ND/RNP/ANP光陽極的吸收效率在太陽光譜300至375奈米波長的部分能達到95%以上。單晶的奈米樹陣列藉由成長奈米顆粒層於殼層的部分可提供大表面積以利於光載子分離。再者,由於銳鈦礦二氧化鈦的導帶能階位置比金紅石二氧化鈦來的高,所以當成長銳鈦礦二氧化鈦奈米顆粒在金紅石二氧化鈦奈米樹陣列上後,合併能階會形成type II的異質界面能隙合併狀態,如此一來所造成的界面能階差可以增進載子分離效率以及在光陽極和電解液的界面處能阻止載子的再結合效應。此光陽極光電流密度能達到令人印象深刻的高電流密度,在1.23伏特的施加偏壓 (相對於可逆氫電極(RHE))及AM 1.5G的太陽光模擬器照射下光電水分解光電流密度為1.7 mA cm−2,此量測電解液是使用濃度1M的氫氧化鉀電解液。延續原本研究內容,近年來本實驗室水分解產氫實驗為了要在更進一步達到環境友善的條件(電解液使用中性電解液及海水量測),我們製作雙層異質界面結構硫化銦/銳鈦礦二氧化鈦奈米顆粒/金紅石二氧化鈦奈米樹(In2S3/ANP/RND)陣列光陽極應用於水氧化反應在中性電解液以及海水中,同時海水又是一個豐沛的水資源。異質界面In2S3/ANP/RND光陽極被設計製造用來克服中性電解液水氧化的缺點,而成長沉積在光陽極表面的硫化銦薄膜並非用來增加額外的可見光吸收效率,主要功用是能夠再與銳鈦礦二氧化奈奈米顆粒層形成第二層type II的異質界面能隙,以此再更進一步增進載子分離效率。在1.23伏特的施加偏壓光電水分解光電流密度可達到1.53 mA cm−2,在中性電解液以及海水水分解系統中,此電流密度已相當卓越並且可逼近金紅石二氧化鈦理論電流密度1.8 mA cm−2。並且再更進一步量測光電極的產氧效率,此量測是利用In2S3/ANP/RND陣列光陽極於1.23伏特的施加偏壓及AM 1.5G的太陽光模擬器照射下光電水分解產氧兩個小時,其法拉第效率為 ~95% 和 ~32%分別在中性電解液以及海水中。
本研究的第二部分中,我們策略性的利用二氧化鈦奈米顆粒薄膜當作光陽及的底層,接著再薄膜上藉由化學氣相層積法成長氧化鐵(α-Fe2O3)奈米薄膜。nN+ 型α-Fe2O3−TiO2異質界面光陽極能形成type II的異質界面能隙用以增進整體光電化學水分解中光陽極的載子分離效率。我們利用開爾文探針力顯微鏡(Kelvin probe force microscope (KPFM))去分析光陽極中載子分離效應,由此分析可以更進一步去證明成長再FTO基板的α-Fe2O3−TiO2異質界面光陽極能形成合適的能階位置以此去增進整體的載子分離效率。在1.23伏特的施加偏壓下,比較純氧化鐵光陽極,α-Fe2O3−TiO2異質界面光陽極之電流密度是純氧化鐵光陽極的八倍。在本實驗中,我們利用添加二氧化二氫的犧牲試劑(迅速抓電洞)於電解液中去量測光電水分解,並且藉由所量測得到的光電流密度加以去分析計算可知,α-Fe2O3−TiO2異質界面光陽極相較於純氧化鐵光陽極,其載子分離效率以及載子注入效率都有顯著的提升,以此證明此氧化鐵-二氧化鈦結構能明顯提升氧化鐵本身的光電流密度。
本研究的最終部分,為了成長更好的大表面積光陽極,我們策略性的成長寬能隙三維結構氧化鋅奈米柱陣列當作是光陽極的模板,接著在氧化鋅奈米柱陣列上去成長四氧化釩鉍的窄能隙可見光吸收材料。藉由調控表面型態以及界面能量,在光電化學量測中四氧化釩鉍-氧化鋅光陽極能夠達到在低偏壓的施加下就足以使材料內部的載子完全分離並且排出空乏層做水分解反應。均勻包覆的高表面積四氧化釩鉍/氧化鐵光陽極在0.8伏特的低施加偏壓下,在整個光電極中,光產生之電子電洞對因為電場幫助的效應下可做有效的分離,並且在奈米柱以及奈米樹的側枝中做徑向的移動並分離。光電洞移動至光陽極以及電解液的界面並加以反應產氧的的驅動完全是藉由電場方向,而其電場方向與光吸收路徑相反。四氧化釩鉍本身有載子傳輸路徑短的缺點,但在我們所設計的BiVO4/ZnO ND陣列結構中並不會受到四氧化釩鉍本身的缺點所限制整體的光電化學效率,在此設計結構中能使光載子快速分離並且藉由電場影響使在材料內部產生之光載子能完全移出並參與水分解反應。因此BiVO4/ZnO ND高吸光度光陽極可增進四氧化釩鉍載子傳輸較慢的缺陷,最後我們更進一步在BiVO4/ZnO ND光陽極表面上以電沉積方式成長Co-Pi共觸媒用以增加載子注入效率,Co-Pi/BiVO4/ZnO ND光陽極在中性電解液中並以1.23伏特的施加偏壓下可獲得3.5 mA cm−2的高電流密度。
In this thesis, we demonstrated the works on the designs and constructions of staggered (type II) heterojunction nanostructured photoanodes for efficient photoelectrochemical (PEC) water splitting. Using TiO2 as a model photocatalyst, a dual-type II heterojunction nanodendrite (ND) array photoanode was constructed through both morphology and interfacial energetics controls, which successfully demonstrated the PEC properties approaching to theoretical performance of rutile TiO2. Moreover, we also challenged the general issue of short charge diffusion length in visible-light-driven photocatalysts. n-Fe2O3 and N-TiO2 were selected to form the simple planar type-II heterojunction photoanode, although the conduction band edge of Fe2O3 is slightly positive to that of TiO2 before contact formation. With appropriate band alignment, the Fe2O3/TiO2 type II heterojunction photoanode showed significantly enhanced PEC water oxidation performance compared to the Fe2O3 photoanode. With aforementioned achievements, we further designed a low-potential driven fully-depleted BiVO4/ZnO heterojuction ND array photoanode where the charge transport mechanism is governed by drift rather than diffusion. The drawback of slow charge transport in intrinsic BiVO4 is therefore overcome due to the decoupling of light absorption and hole drifting paths in different directions. Superior PEC water oxidation performance was demonstrated in this BiVO4/ZnO heterojuntion ND array photoanode.
In the first section, a 3D hierarchical core−shell TiO2 nanostructured array is fabricated by considering the aspects of morphology and interfacial energetics for a water splitting photoanode. The core portion is a rutile TiO2 ND array, and the shell portion is rutile and anatase TiO2 rutile nanoparticles (RNPs) and anatase nanoparticles (ANPs) sequentially located on the surface. A light harvest of more than 95% in the range of 300−375 nm was achieved using the hierarchical TiO2 ND/RNP/ANP photoanode. The quasi-single crystalline ND array with NPs in the shell portion provides a large surface area for efficient photocharge separation. Moreover, owning to the conduction band (CB) edge of anatase TiO2 being higher than that of rutile TiO2, ANPs on the surface of the rutile ND/RNP array form type II staggered heterojunction for enhancing charge separation and suppress charge recombination at the interfacial region between the electrode and water. A remarkable photocurrent density of 1.7 mA cm−2 at 1.23 V vs RHE was attained under illumination of AM 1.5G in alkaline electrolyte (1M KOH). Then, in order to achieve the eco-friendly hydrogen generation from PEC water splitting, we fabricated the dual-staggered-heterojunction In2S3/ANP/RND array photoanode for water oxidation in neutral electrolyte and seawater which is a plenty resource on earth. Accordingly, the dual-staggered-heterojunction In2S3/ANP/RND array photoanode is fabricated to overcome the drawbacks of neutral electrolyte water oxidation. A thin In2S3 layer deposited on the surface of the photoanode, which sole function is for forming the additional staggered heterojunction with the hierarchical TiO2 ND array, not for harvesting extra visible light. A photocurrent density of 1.53 mA cm−2 at 1.23 V vs. RHE was attained and superior photocurrent densities of PEC water splitting in neutral electrolyte and PEC seawater splitting, which approach to the theoretical value of 1.8 mA cm−2 for rutile TiO2. Finally, Faradaic efficiencies of ~95% and ~32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2h were acquired through the TiO2-based dual-staggered heterojunction ND array photoanode at 1.23 V vs. RHE under AM 1.5G (100 mWcm-2) irradiation, respectively.
In the second section, we tactically construct TiO2 NP thin film underlayer subsequent with nanostructured α-Fe2O3. The nN+ α-Fe2O3−TiO2 heterojunction photoanode forms similar type II band alignment for improving the charge separation efficiency in PEC water splitting. Charge distribution in the hematite-TiO2 heterostructure is investigated using Kelvin probe force microscope (KPFM), which determines the improvement of charge separation in hematite layer by the formation of energy-matched nN+ α-Fe2O3−TiO2 heterojunction on FTO substrate. Compared to the hematite photoanode, an eightfold enhancement of the photocurrent density at 1.23 V versus RHE is achieved in the hematite-TiO2 heterojunction photoanode. By using hydrogen peroxide as a hole scavenger, it reveals that both charge separation and injection efficiencies in the nN+ α-Fe2O3−TiO2 heterojunction photoanode are increased compared to those in hematite photoanode.
In the final section, in order to construct better photoanodes, we tactically grown 3D ZnO ND large bandgap material as template and subsequently fabricate bismuth vanadate (BiVO4) on ZnO ND. The low-potential driven fully-depleted intrinsic BiVO4-based photoanodes were realized by the conformal formation of thin BiVO4 layers on the ZnO nanostructured arrays on the basis considerations of morphology and interfacial energetic controls. The large surface area BiVO4/ZnO ND array photoanodes are fully-depleted at 0.8 V vs. RHE where the photogenerated electron-hole pairs in the whole electrode can be efficiently separated by the electric field developed in radial directions of the nanorods and branches. The photogenerated holes drifting to the interface of photoanode and electrolyte for further oxygen evolution is completely driven by the electric field with a different direction from the light absorption path. The characteristic of short carrier diffusion length won’t restrict the PEC performance of the intrinsic BiVO4 because charge transport mechanism in the fully-depleted ND heterojunction array photoanode is governed by drift. Therefore, the obstacle of slow charge transport in BiVO4 is significantly improved in the high-light-harvesting BiVO4/ZnO ND array photoanode. With the co-catalyst cobalt phosphate (Co-Pi) on the surface for improving the charge injection efficiency, the photocurrent density of the Co-Pi/BiVO4/ZnO ND photoanode at 1.23 V vs. RHE was optimized to be 3.5 mAcm−2 in the neutral electrolyte.
[1] Y. Li, J. Z. Zhang, “Hydrogen generation from photoelectrochemical water splitting
based on nanomaterials”, Laser Photon. Rev., 4, 517-528 (2010).
[2] Akira Fujishima, Kenichi Honda, “Electrochemical Photolysis of Water at a
Semiconductor Electrode“, Nature, 238, 37-38 (1972).
[3] Hailong Zhou, Yongquan Qu, Tahani Zeid, Xiangfeng Duan, “Towards highly efficient
photocatalysts using semiconductor nanoarchitectures”, Energy Environ. Sci., 5, 6732-6743 (2012).
[4] Meng Ni, Michael K. H. Leung, Dennis Y. C. Leung, K. Sumathy, “A review and recent
developments in photocatalytic water-splitting using TiO2 for hydrogen production”, Renew. Sust. Energ. Rev., 11 (2007) 401-425.
[5] Xiaobo Chen, Shaohua Shen, Liejin Guo, Samuel S. Mao, “Semiconductor-based
Photocatalytic Hydrogen Generation”, Chem. Rev., 110, 6503-6570 (2010).
[6] Robert W. Coughlin, M. Farooque, “Hydrogen production from coal, water and
electrons”, Nature, 279, 301-303 (1979).
[7] L. J. Guo, L. Zhao, D. W. Jing, Y. J. Lu, H. H. Yang, B. F. Bai, X. M. Zhang, L. J. Ma,
X. M. Wu, “Reprint of: Solar hydrogen production and its development in China”, Energy, 35, 4421-4438 (2010).
[8] Kazuhiko Maeda, Kentaro Teramura, Daling Lu, Nobuo Saito, Yasunobu Inoue,
Kazunari Domen, “Roles of Rh/Cr2O3 (Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting”, J. Phys. Chem. C, 111, 7554-7560 (2007).
[9] Lorna Jeffery Minggu, Wan Ramli Wan Daud, Mohammad B. Kassim, “An overview of
photocells and photoreactors for photoelectrochemical water splitting”, Int. J. Hydrog. Energy, 35, 5233-5244 (2010).
[10] Kazuhiko Maeda, “Photocatalytic water splitting using semiconductor particles: History
and recent developments”, J. Photochem. Photobiol. C-Photochem. Rev., 12, 237-268 (2011).
[11] Masahide Takahashi, Kaori Tsukigi, Takashi Uchino, Toshinobu Yoko, “Enhanced
photocurrent in thin film TiO2 electrodes prepared by sol–gel method”, Thin Solid Films,
388, 231-236 (2001).
[12] Zhonghai Zhang, Peng Wang, “Optimization of photoelectrochemical water splitting
performance on hierarchical TiO2 nanotube arrays”, Energy Environ. Sci., 5, 6506-6512 (2012).
[13] In Sun Cho, Zhebo Chen, Arnold J. Forman, Dong Rip Kim, Pratap M. Rao, Thomas F.
Jaramillo, Xiaolin Zheng, “Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production”, Nano Lett., 11, 4978-4984 (2011).
[14] Jih-Sheng Yang, Wen-Pin Liao, Jih-Jen Wu, Morphology and Interfacial Energetics
Controls for Hierarchical Anatase/Rutile TiO2 Nanostructured Array for Efficient Photoelectrochemical Water Splitting, ACS Applied Materials & Interfaces, 5 (2013) 7425-7431.
[15] Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi
Mi, Elizabeth A. Santori, Nathan S. Lewis, “Solar Water Splitting Cells”, Chem. Rev., 110, 6446-6473 (2010).
[16] Xunyu Yang, Abraham Wolcott, Gongming Wang, Alissa Sobo, Robert Carl Fitzmorris,
Fang Qian, Jin Z. Zhang, Yat Li, “Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting”, Nano Lett., 9, 2331-2336 (2009).
[17] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H.
Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, “High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition”, Appl. Phys. Lett., 82, 3901-3903 (2003).
[18] E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, “Local Field Effects on Electron
Transport in Nanostructured TiO2 Revealed by Terahertz Spectroscopy”, Nano Lett., 6, 755-759 (2006).
[19] Abraham Wolcott, Wilson A. Smith, Tevye R. Kuykendall, Yiping Zhao, Jin Z. Zhang,
“Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting”, Adv. Funct. Mater., 19, 1849-1856 (2009).
[20] Kwang-Soon Ahn, Yanfa Yan, Sudhakar Shet, Kim Jones, Todd Deutsch, John Turner,
Mowafak Al-Jassim, “ZnO nanocoral structures for photoelectrochemical cells”, Appl. Phys. Lett., 93, 163117 (2008).
[21] Yongcai Qiu, Keyou Yan, Hong Deng, Shihe Yang, “Secondary Branching and Nitrogen
Doping of ZnO Nanotetrapods: Building a Highly Active Network for Photoelectrochemical Water Splitting”, Nano Lett., 12, 407-413 (2012).
[22] Chaoran Jiang, Savio J. A. Moniz, Majeda Khraisheh, Junwang Tang, “Earth-Abundant
Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient
Photoelectrochemical Water Cleavage”, Chem.-Eur. J., 20, 12954-12961 (2014).
[23] Hao Ming Chen, Chih Kai Chen, Ru-Shi Liu, Lei Zhang, Jiujun Zhang, David P.
Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes”, Chem. Soc. Rev., 41, 5654-5671 (2012).
[24] James C. Hill, Kyoung-Shin Choi, “Effect of Electrolytes on the Selectivity and
Stability of n-type WO3 Photoelectrodes for Use in Solar Water Oxidation”, J. Phys. Chem. C, 116, 7612-7620 (2012).
[25] Andreas Kay, Ilkay Cesar, Michael Grätzel, “New Benchmark for Water Photooxidation
by Nanostructured α-Fe2O3 Films”, J. Am. Chem. Soc., 128, 15714-15721 (2006).
[26] Diane K. Zhong, Sujung Choi, Daniel R. Gamelin, “Near-Complete Suppression of
Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4”, J. Am. Chem. Soc., 133, 18370-18377 (2011).
[27] Joseph E. Yourey, Bart M. Bartlett, “Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation”, J. Mater. Chem., 21, 7651-7660 (2011).
[28] Siguang Chen, Maggie Paulose, Chuanmin Ruan, Gopal K. Mor, Oomman K. Varghese,
Dimitris Kouzoudis, Craig A. Grimes, “Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells”, J. Photochem. Photobiol. A-Chem., 177, 177-184 (2006).
[29] Gongming Wang, Xunyu Yang, Fang Qian, Jin Z. Zhang, Yat Li, “Double-Sided CdS
and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical
Hydrogen Generation”, Nano Lett., 10, 1088-1092 (2010).
[30] Yang Tian, Ligang Wang, Hanqin Tang, Weiwei Zhou, “Ultrathin two-dimensional β
-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties”, J. Mater. Chem. A, 3, 11294-11301 (2015).
[31] Erwei Huang, Xiaolong Yao, Weichao Wang, Guangjun Wu, Naijia Guan, Landong Li,
“SnS2 Nanoplates with Specific Facets Exposed for Enhanced Visible-Light-Driven Photocatalysis”, ChemPhotoChem, 1, 60-69 (2017).
[32] Yajun Wang, Qisheng Wang, Xueying Zhan, Fengmei Wang, Muhammad Safdar, Jun
He, “Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review”, Nanoscale, 5, 8326-8339 (2013).
[33] Hunter McDaniel, Philip Edward Heil, Cheng-Lin Tsai, Kyekyoon Kim, Moonsub Shim,
“Integration of Type II Nanorod Heterostructures into Photovoltaics”, ACS Nano, 5, 7677-7683 (2011).
[34] S. David Tilley, Maurin Cornuz, Kevin Sivula, Michael Grätzel, “Light-Induced Water
Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis”, Angew.Chem.Int. Ed., 122, 6549-6552 (2010).
[35] Martin P. Dare-Edwards, John B. Goodenough, Andrew Hamnett, Peter R. Trevellick,
“Electrochemistry and photoelectrochemistry of iron(III) oxide”, J. Chem. Soc. 79 2027-2041 (1983).
[36] Florian Le Formal, Michael Grätzel, Kevin Sivula, “Controlling Photoactivity in
Ultrathin Hematite Films for Solar Water-Splitting”, Adv. Funct. Mater., 20, 1099-1107
(2010).
[37] Ilkay Cesar, Kevin Sivula, Andreas Kay, Radek Zboril, Michael Grätzel, “Influence of
Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting”, J. Phys. Chem. C, 113, 772-782 (2009).
[38] Jih-Sheng Yang, Wan-Hsien Lin, Chia-Yu Lin, Bo-Sheng Wang, Jih-Jen Wu, “n-Fe2O3
to N+-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation”, ACS Appl. Mater. Interfaces, 7, 13314-13321 (2015).
[39] Jih-Sheng Yang, Jih-Jen Wu, “Low-potential driven fully-depleted BiVO4/ZnO
heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting”, Nano Energy, 32, 232-240 (2017).
[40] Seichang Oh, Wonsik Nam, Hyunku Joo, Sarper Sarp, Jaeweon Cho, Chang-Ha Lee,
Jaekyung Yoon, “Photoelectrochemical hydrogen production with concentrated natural
seawater produced by membrane process”, Solar Energy, 85, 2256-2263 (2011).
[41] Amy L. Linsebigler, Guangquan Lu, John T. Yates, “Photocatalysis on TiO2 Surfaces:
Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735-758 (1995).
[42] Jun Xing, Wen Qi Fang, Hui Jun Zhao, Hua Gui Yang, “Inorganic Photocatalysts for
Overall Water Splitting”, Chem.-Asian J., 7, 642-657 (2012).
[43] A J Nozik, “Photoelectrochemistry: Applications to Solar Energy Conversion”, Annu.
Rev. Phys. Chem., 29, 189-222 (1978).
[44] Allen J. Bard, Marye Anne Fox, Artificial Photosynthesis: Solar Splitting of Water to
Hydrogen and Oxygen”, Accounts Chem. Res., 28, 141-145 (1995).
[45] Mark S. Wrighton, “Photoelectrochemical conversion of optical energy to electricity
and fuels”, Accounts Chem. Res., 12, 303-310 (1979).
[46] Arthur J. Nozik, Rüdiger Memming, “Physical Chemistry of Semiconductor−Liquid
Interfaces”, J. Phys. Chem, 100, 13061-13078 (1996).
[47] E. Aharon‐Shalom, A. Heller, “Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes”, J. Electrochem. Soc., 129, 2865-2866 (1982).
[48] A. Heller, D. E. Aspnes, J. D. Porter, T. T. Sheng, R. G. Vadimsky, “Transparent metals preparation and characterization of light-transmitting platinum films”, J. Phys. Chem, 89, 4444-4452 (1985).
[49] John D. Porter, Adam Heller, David E. Aspnes, “Experiment and theory of /`transparent/' metal films”, Nature, 313, 664-666 (1985).
[50] Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.
[51] Andrew Mills, George Porter, “Photosensitised dissociation of water using dispersed suspensions of n-type semiconductors”, J. Chem. Soc., 78, 3659-3669 (1982).
[52] V. A. Kharlanov, M. I. Knyazhansky, N. I. Makarova, V. A. Lokshin, “The peculiarities of the spectral luminescence properties of N-anthryl-substituted pyridinium cations”, J. Photochem. Photobiol. A-Chem., 70, 223-227 (1993).
[53] T. Sakata, T. Kawai, K. Hashimoto, “Photochemical diode model of Pt/TiO2 particle and its photocatalytic activity”, Chem. Phys. Lett., 88, 50-54 (1982).
[54] Yoshinao Oosawa, Michael Gratzel, “Enhancement of photocatalytic oxygen evolution
in aqueous TiO2 suspensions by removal of surface-OH groups”, J. Chem. Soc., 1629-1630 (1984).
[55] Bunsho Ohtani, Yoshimasa Ogawa, Sei-ichi Nishimoto, “Photocatalytic Activity of
Amorphous−Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions”, J. Phys. Chem. B, 101, 3746-3752 (1997).
[56] Kazuhiko Maeda, Kentaro Teramura, Tsuyoshi Takata, Michikazu Hara, Nobuo Saito,
Kenji Toda, Yasunobu Inoue, Hisayoshi Kobayashi, Kazunari Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 109, 20504-20510 (2005).
[57] Joshua M. Spurgeon, Harry A. Atwater, Nathan S. Lewis, “A Comparison Between the
Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes”, J. Phys. Chem. C,
112, 6186-6193 (2008).
[58] Torbjörn Lindgren, Heli Wang, Niclas Beermann, Lionel Vayssieres, Anders Hagfeldt,
Sten-Eric Lindquist, “Aqueous photoelectrochemistry of hematite nanorod array”, Sol. Energy Mater. Sol. Cells, 71, 231-243 (2002).
[59] Niclas Beermann, Lionel Vayssieres, Sten‐Eric Lindquist, Anders Hagfeldt,
“Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite”, J. Electrochem. Soc., 147, 2456-2461 (2000).
[60] Shahed U. M. Khan, Tamanna Sultana, “Photoresponse of n-TiO2 thin film and nanowire electrodes”, Sol. Energy Mater. Sol. Cells, 76, 211-221 (2003).
[61] Kwang-Soon Ahn, Sudhakar Shet, Todd Deutsch, Chun-Sheng Jiang, Yanfa Yan, Mowafak Al-Jassim, John Turner, “Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films”, J. Power Sources, 176, 387-392 (2008).
[62] Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays”, Nano Lett., 5, 191-195 (2005).
[63] Oomman K. Varghese, Craig A. Grimes, “Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes”, Sol. Energy Mater. Sol. Cells, 92, 374-384 (2008).
[64] Micha Tomkiewicz, Jerry M. Woodall, “Photoelectrolysis of Water with Semiconductor
Materials”, J. Electrochem. Soc., 124, 1436-1440 (1977).
[65] Mark S. Wrighton, David S. Ginley, Peter T. Wolczanski, Arthur B. Ellis, David L. Morse, Arthur Linz, “Photoassisted Electrolysis of Water by Irradiation of a Titanium Dioxide Electrode”, Proceedings of the National Academy of Sciences, 72, 1518-1522 (1975).
[66] Bruce Parkinson, “On the efficiency and stability of photoelectrochemical devices”, Accounts Chem. Res., 17, 431-437 (1984).
[67] Akira Fujishima, Koichi Kohayakawa, Kenichi Honda, “Hydrogen Production under Sunlight with an Electrochemical Photocell”, J. Electrochem. Soc., 122, 1487-1489 (1975).
[68] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, “Efficiency of solar water splitting using semiconductor electrodes”, Int. J. Hydrog. Energy, 31, 1999-2017 (2006).
[69] Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler, “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”, Science, 297, 2243-2245 (2002).
[70] P. G. P. Ang, A. F. Sommells, “Hydrogen Evolution at p ‐ InP Photocathodes in Alkaline
Electrolyte”, J. Electrochem. Soc., 131, 1462-1464 (1984).
[71] Juergen K. Dohrmann, Nils-Soeren Schaaf, “Energy conversion by photoelectrolysis of
water: determination of efficiency by in situ photocalorimetry”, J. Phys. Chem., 96, 4558-4563 (1992).
[72] Klaus S. Lackner, “Comment on "Efficient Photochemical Water Splitting by a
Chemically Modified n-TiO2(III)”, Science, 301, 1673-1673 (2003).
[73] A. B. Murphy, “Band-gap determination from diffuse reflectance measurements of
semiconductor films, and application to photoelectrochemical water-splitting”, Sol. Energy Mater. Sol. Cells, 91, 1326-1337 (2007).
[74] V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting”, Solar Energy, 78, 581-592 (2005).
[75] K. S. Raja, V. K. Mahajan, M. Misra, “Determination of photo conversion efficiency of
nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation”, J. Power Sources, 159, 1258-1265 (2006).
[76] Nick Serpone, Geneviève Sauvé, Ralf Koch, Halima Tahiri, Pierre Pichat, Paola Piccinini, Ezio Pelizzetti, Hisao Hidaka, “Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ζr”, J. Photochem. Photobiol. A-Chem., 94, 191-203 (1996).
[77] V. M. Arakelyan, V. M. Aroutiounian, G. E. Shahnazaryan, E. A. Khachaturyan, “Thin film n-titanium oxide photoanodes for photoelectrochemical production of hydrogen”, Renew. Energy, 33, 299-303 (2008).
[78] Yun Jeong Hwang, Chris Hahn, Bin Liu, Peidong Yang, “Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating”, ACS Nano, 6, 5060-5069 (2012).
[79] Bin Liu, Eray S. Aydil, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”, J. Am. Chem. Soc., 131, 3985-3990 (2009).
[80] Guanjie Ai, Rong Mo, Hongxing Li, Jianxin Zhong, “Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting”, Nanoscale, 7, 6722-6728 (2015).
[81] Guanjie Ai, Rong Mo, Hang Xu, Qian Chen, Sui Yang, Hongxing Li, Jianxin Zhong, “Composition-optimized TiO2/CdSxSe1-x core/shell nanowire arrays for photoelectrochemical hydrogen generation”, J. Appl. Phys., 116, 174306 (2014).
[82] P. Das Prajna, K. Mohapatra Susanta, Misra Mano, “Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles”, J. Phys. D-Appl. Phys., 41, 245103 (2008).
[83] Rimeh Daghrir, Patrick Drogui, Didier Robert, “Modified TiO2 For Environmental Photocatalytic Applications: A Review”, Ind. Eng. Chem. Res., 52, 3581-3599 (2013).
[84] Yanzong Zhang, Xiaoyan Xiong, Yue Han, Xiaohong Zhang, Fei Shen, Shihuai Deng, Hong Xiao, Xinyao Yang, Gang Yang, Hong Peng, “Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview”, Chemosphere, 88, 145-154 (2012).
[85] Chao Min Teh, Abdul Rahman Mohamed, “Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review”, J. Alloy. Compd., 509, 1648-1660 (2011).
[86] Akira Fujishima, Xintong Zhang, Donald A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surf. Sci. Rep., 63, 515-582 (2008).
[87] Yelda Yalçın, Murat Kılıç, Zekiye Çınar, “Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity”, Appl. Catal. B-Environ., 99, 469-477 (2010).
[88] Didier Robert, “Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications”, Catal. Today, 122, 20-26 (2007).
[89] Huanjun Zhang, Guohua Chen, Detlef W. Bahnemann, “Photoelectrocatalytic materials
for environmental applications”, J. Mater. Chem., 19, 5089-5121 (2009).
[90] Na Lu, Xie Quan, JingYuan Li, Shuo Chen, HongTao Yu, GuoHua Chen, “Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability”, J. Phys. Chem. C, 111, 11836-11842 (2007).
[91] M. Alam Khan, Seong Ihl Woo, O. Bong Yang, “Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction”, Int. J. Hydrog. Energy, 33, 5345-5351 (2008).
[92] Chittaranjan Das, Poulomi Roy, Min Yang, Himendra Jha, Patrik Schmuki, “Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting”, Nanoscale, 3, 3094-3096 (2011).
[93] Alexei Tighineanu, Tobias Ruff, Sergiu Albu, Robert Hahn, Patrik Schmuki, “Conductivity of TiO2 nanotubes: Influence of annealing time and temperature”, Chem. Phys. Lett., 494, 260-263 (2010).
[94] Marco Altomare, Kiyoung Lee, Manuela S. Killian, Elena Selli, Patrik Schmuki, “Ta-Doped TiO2 Nanotubes for Enhanced Solar-Light Photoelectrochemical Water Splitting”, Chem.-Eur. J., 19, 5841-5844 (2013).
[95] Yoon-Chae Nah, Indhumati Paramasivam, Patrik Schmuki, “Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications”, ChemPhysChem, 11, 2698-2713(2010).
[96] Wonyong Choi, Andreas Termin, Michael R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, J. Phys. Chem., 98, 13669-13679 (1994).
[97] Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout, James L.
Gole, “Enhanced Nitrogen Doping in TiO2 Nanoparticles”, Nano Lett., 3, 1049-1051 (2003).
[98] A. Di Paola, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, “Transition metal doped TiO2:
physical properties and photocatalytic behaviour”, Int. J. Photoenergy, 3, (2001).
[99] J. Matos, J. Laine, J. M. Herrmann, D. Uzcategui, J. L. Brito, “Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation”, Appl. Catal. B-Environ., 70, 461-469 (2007).
[100] Jimmy C. Yu, Yu, Ho, Jiang, Zhang, “Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders”, Chem. Mat., 14, 3808-3816 (2002).
[101] Wenjie Ren, Zhihui Ai, Falong Jia, Lizhi Zhang, Xiaoxing Fan, Zhigang Zou, “Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2”, Appl. Catal. B-Environ., 69, 138-144 (2007).
[102] Yanmin Liu, Jingze Liu, Yulong Lin, Yanfeng Zhang, Yu Wei, “Simple fabrication and
photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation”,
Ceram. Int., 35, 3061-3065 (2009).
[103] Jong Hyeok Park, Sungwook Kim, Allen J. Bard, “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting”, Nano Lett., 6, 24-28 (2006).
[104] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in
Nitrogen-Doped Titanium Oxides”, Science, 293, 269-271 (2001).
[105] Gemma Romualdo Torres, Torbjörn Lindgren, Jun Lu, Claes-Göran Granqvist, Sten-Eric Lindquist,” Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation”, J. Phys. Chem. B, 108, 5995-6003 (2004).
[106] Guosheng Wu, Jingpeng Wang, Dan F. Thomas, Aicheng Chen, “Synthesis of F-Doped
Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity”, Langmuir,
24, 3503-3509 (2008).
[107] B. Viswanathan, K. R. Krishanmurthy, “Nitrogen Incorporation in TiO2: Does It Make
a Visible Light Photo-Active Material?”, Int. J. Photoenergy, 2012, 10 (2012).
[108] Feng Peng, Lingfeng Cai, Lei Huang, Hao Yu, Hongjuan Wang, “Preparation of
nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile
hydrothermal method”, J. Phys. Chem. Solids, 69, 1657-1664 (2008).
[109] Yanhui Ao, Jingjing Xu, Degang Fu, Chunwei Yuan, “A simple method to prepare N-
doped titania hollow spheres with high photocatalytic activity under visible light”, J. Hazard. Mater., 167, 413-417 (2009).
[110] Ryoji Asahi, Takeshi Morikawa, “Nitrogen complex species and its chemical nature in
TiO2 for visible-light sensitized photocatalysis”, Chem. Phys., 339, 57-63 (2007).
[111] Son Hoang, Siwei Guo, Nathan T. Hahn, Allen J. Bard, C. Buddie Mullins, “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires”, Nano Lett., 12, 26-32 (2012).
[112] Radim Beranek, Bernhard Neumann, Shanmugasundaram Sakthivel, Marcin Janczarek, Thomas Dittrich, Helmut Tributsch, Horst Kisch, “Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies”, Chem. Phys., 339, 11-19 (2007).
[113] Gongming Wang, Xiangheng Xiao, Wenqing Li, Zhaoyang Lin, Zipeng Zhao, Chi Chen, Chen Wang, Yongjia Li, Xiaoqing Huang, Ling Miao, Changzhong Jiang, Yu Huang, Xiangfeng Duan, “Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation”, Nano Lett., 15, 4692-4698 (2015).
[114] Xiao-Mei Song, Jin-Ming Wu, Ming-Zao Tang, Bin Qi, Mi Yan, “Enhanced Photoelectrochemical Response of a Composite Titania Thin Film with Single-Crystalline Rutile Nanorods Embedded in Anatase Aggregates”, J. Phys. Chem. C, 112, 19484-19492 (2008).
[115] Taishi Sumita, Tetsuya Yamaki, Shunya Yamamoto, Atsumi Miyashita, “Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films”, Appl. Surf. Sci., 200, 21-26 (2002).
[116] M. Zhou, W. Y. Lin, N. R. de Tacconi, K. Rajeshwar, “Metal/semiconductor electrocomposite photoelectrodes: behavior of NiTiO2 photoanodes and comparison of photoactivity of anatase and rutile modifications”, J. Electroanal. Chem., 402, 221-224 (1996).
[117] Yung Kent Kho, Akihide Iwase, Wey Yang Teoh, Lutz Mädler, Akihiko Kudo, Rose Amal, “Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile”, J. Phys. Chem. C, 114, 2821-2829 (2010).
[118] Xian-Feng Gao, Hong-Bo Li, Wen-Tao Sun, Qing Chen, Fang-Qiong Tang, Lian-Mao
Peng, “CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes”, J. Phys.
Chem. C, 113, 7531-7535 (2009).
[119] Hua Wang, Yusong Bai, Hao Zhang, Zhonghao Zhang, Jinghong Li, Lin Guo, “CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes”, J. Phys. Chem. C, 114, 16451-16455 (2010).
[120] Tae Kwang Sung, Jun Ha Kang, Dong Myung Jang, Yoon Myung, Gyeong Bok Jung, Han Sung Kim, Chan Su Jung, Yong Jae Cho, Jeunghee Park, Chang-Lyoul Lee, “CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes”, J. Mater. Chem., 21, 4553-4561 (2011).
[121] Yichuan Ling, Gongming Wang, Damon A. Wheeler, Jin Z. Zhang, Yat Li, Sn-“Doped
Hematite Nanostructures for Photoelectrochemical Water Splitting”, Nano Lett., 11, 2119-2125 (2011).
[122] Bircan Dindar, Siddik Içli, “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight”, J. Photochem. Photobiol. A-Chem., 140, 263-268 (2001).
[123] Wei Yuefan, Ke Lin, Kong Junhua, Liu Hong, Jiao Zhihui, Lu Xuehong, Du Hejun, Sun Xiao Wei, “Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles”, Nanotechnology, 23, 235401, (2012).
[124] Katherine A. Willets, Richard P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., 58, 267-297 (2007).
[125]Yu-Kuei Hsu, Yan-Gu Lin, Ying-Chu Chen, “Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting”, Electrochem. Commun., 13, 1383-1386 (2011).
[126] Debabrata Pradhan, Kam Tong Leung, ‘Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct Electrodeposition”, Langmuir, 24, 9707-9716 (2008).
[127] Giovanni Bruno, Maria Michela Giangregorio, Graziella Malandrino, Pio Capezzuto, Ignazio L. Fragalà, Maria Losurdo, “Is There a ZnO Face Stable to Atomic Hydrogen?”, Adv. Mater., 21, 1700-1706 (2009).
[128] Kyoung-Shin Choi, “Shape Effect and Shape Control of Polycrystalline Semiconductor Electrodes for Use in Photoelectrochemical Cells”, J. Phys. Chem. Lett., 1, 2244-2250 (2010).
[129] N. K. Hassan, M. R. Hashim, Nageh K. Allam, “ZnO nano-tetrapod photoanodes for enhanced solar-driven water splitting”, Chem. Phys. Lett., 549, 62-66 (2012).
[130] Nageh K. Allam, Karthik Shankar, Craig A. Grimes, “Photoelectrochemical and water
photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in
fluoride-free HCl electrolytes”, J. Mater. Chem., 18, 2341-2348 (2008).
[131] Chih-Hsiung Hsu, Dong-Hwang Chen, “Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting”, Int. J. Hydrog. Energy, 36, 15538-15547 (2011).
[132] J. J. Hassan, Z. Hassan, H. Abu-Hassan, “High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates”, J. Alloy. Compd., 509, 6711-6719 (2011).
[133] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, S. J. Chua, “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition”, J. Appl. Phys., 98, 013505 (2005).
[134] K. R. Murali, “Properties of sol–gel dip-coated zinc oxide thin films”, J. Phys. Chem. Solids, 68, 2293-2296 (2007).
[135] Kwang-Soon Ahn, Yanfa Yan, Sudhakar Shet, Todd Deutsch, John Turner, Mowafak Al-Jassim, “Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping”, Appl. Phys. Lett., 91, 231909 (2007).
[136] Woo-Jin Lee, Hiroshi Okada, Akihiro Wakahara, Akira Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y”, Ceram. Int. 32, 495-498 (2006).
[137] M. Yousefi, M. Amiri, R. Azimirad, A. Z. Moshfegh, “Enhanced photoelectrochemical
activity of Ce doped ZnO nanocomposite thin films under visible light”, J. Electroanal. Chem., 661, 106-112 (2011).
[138] Jiandong Fan, Frank Güell, Cristian Fábrega, Alexey Shavel, Alex Carrete, Teresa Andreu, Joan Ramón Morante, Andreu Cabot, “Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile”, Appl. Phys. Lett., 99, 262102 (2011).
[139] Jiandong Fan, Alexey Shavel, Reza Zamani, Cristian Fábrega, Jean Rousset, Servane Haller, Frank Güell, Alex Carrete, Teresa Andreu, Jordi Arbiol, Joan Ramón Morante, Andreu Cabot, “Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires”, Acta Materialia, 59, 6790-6800 (2011).
[140] Elias Burstein, “Anomalous Optical Absorption Limit in InSb”, Physical Review, 93, 632-633 (1954).
[141] Sudhakar Shet, Kwang-Soon Ahn, Heli Wang, Ravindra Nuggehalli, Yanfa Yan, John Turner, Mowafak Al-Jassim, “Effect of substrate temperature on the photoelectrochemical responses of Ga and N co-doped ZnO films”, J. Mater. Sci., 45, 5218-5222 (2010).
[142] Masanobu Futsuhara, Katsuaki Yoshioka, Osamu Takai, “Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering”, Thin Solid Films, 322, 274-281 (1998).
[143] Sudhakar Shet, Kwang-Soon Ahn, Todd Deutsch, Heli Wang, Ravindra Nuggehalli, Yanfa Yan, John Turner, Mowafak Al-Jassim, “Influence of gas ambient on the synthesis of co-doped ZnO:(Al,N) films for photoelectrochemical water splitting”, J. Power Sources, 195, 5801-5805 (2010).
[144] Shilei Xie, Xihong Lu, Teng Zhai, Wei Li, Minghao Yu, Chaolun Liang, Yexiang Tong,
“Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting”, J. Mater. Chem., 22, 14272-14275 (2012).
[145] Sudhakar Shet, Kwang-Soon Ahn, Ravindra Nuggehalli, Yanfa Yan, John Turner, Mowafak Al-Jassim, “Phase separation in Ga and N co-incorporated ZnO films and its effects on photo-response in photoelectrochemical water splitting”, Thin Solid Films, 519, 5983-5987 (2011).
[146] Youngjo Tak, Suk Joon Hong, Jae Sung Lee, Kijung Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion”, J. Mater. Chem., 19, 5945-5951 (2009).
[147] Wen-Tao Sun, Yuan Yu, Hua-Yong Pan, Xian-Feng Gao, Qing Chen, Lian-Mao Peng, “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes”, J. Am. Chem. Soc., 130, 1124-1125 (2008).
[148] Chin-Jung Lin, Szu-ying Chen, Ya-Hsuan Liou, “Wire-shaped electrode of CdSe-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation”, Electrochem. Commun., 12, 1513-1516 (2010).
[149] Neelu Chouhan, Chai Ling Yeh, Shu-Fen Hu, Ru-Shi Liu, Wen-Sheng Chang, Kuei-Hsien Chen, “Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water”, Chem. Commun., 47, 3493-3495 (2011).
[150] Lianhua Qu, Xiaogang Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth”, J. Am. Chem. Soc., 124, 2049-2055 (2002).
[151] W. William Yu, Lianhua Qu, Wenzhuo Guo, Xiaogang Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals”, Chem. Mat., 15, 2854-2860 (2003).
[152] N. Chouhan, C. L. Yeh, S. F. Hu, J. H. Huang, C. W. Tsai, R. S. Liu, W. S. Chang, K. H. Chen, “Array of CdSe QD-Sensitized ZnO Nanorods Serves as Photoanode for Water Splitting”, J. Electrochem. Soc., 157, B1430-B1433 (2010).
[153] Xina Wang, Haojun Zhu, Yeming Xu, Hao Wang, Yin Tao, Suikong Hark, Xudong Xiao, Quan Li, “Aligned ZnO/CdTe Core−Shell Nanocable Arrays on Indium Tin Oxide: Synthesis and Photoelectrochemical Properties”, ACS Nano, 4, 3302-3308 (2010).
[154] Hao Ming Chen, Chih Kai Chen, Yu-Chuan Chang, Chi-Wen Tsai, Ru-Shi Liu, Shu-Fen Hu, Wen-Sheng Chang, Kuei-Hsien Chen, “Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting”, Angew.Chem.Int. Ed., 122, 6102-6105 (2010).
[155] Minsu Seol, Heejin Kim, Wooseok Kim, Kijung Yong, “Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer”, Electrochem. Commun., 12, 1416-1418 (2010).
[156] HyoJoong Lee, Mingkui Wang, Peter Chen, Daniel R. Gamelin, Shaik M. Zakeeruddin,
Michael Grätzel, Md K. Nazeeruddin, “Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process”, Nano Lett., 9, 4221-4227 (2009).
[157] Yuh-Lang Lee, Ching-Fa Chi, Shih-Yi Liau, “CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell”, Chem. Mat., 22, 922-927 (2010).
[158] Jin Ho Bang, Prashant V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two
Semiconductor Nanocrystals: CdSe and CdTe”, ACS Nano, 3, 1467-1476 (2009).
[159] Kevin Sivula, Florian Le Formal, Michael Grätzel, “Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes”, ChemSusChem, 4, 432-449 (2011).
[160] Stephanie R. Pendlebury, Alexander J. Cowan, Monica Barroso, Kevin Sivula, Jinhua
Ye, Michael Gratzel, David R. Klug, Junwang Tang, James R. Durrant, “Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes”, Energy Environ. Sci., 5, 6304-6312 (2012).
[161] Monica Barroso, Stephanie R. Pendlebury, Alexander J. Cowan, James R. Durrant, “Charge carrier trapping, recombination and transfer in hematite (α- Fe2O3) water splitting photoanodes”, Chem. Sci., 4, 2724-2734 (2013).
[162] Thomas J. LaTempa, Xinjian Feng, Maggie Paulose, Craig A. Grimes, “Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties”, J. Phys. Chem. C, 113, 16293-16298 (2009).
[163] John H. Kennedy, Karl W. Frese, “Photooxidation of Water at α‐ Fe2O3 Electrodes”, J.
Electrochem. Soc., 125, 709-714 (1978).
[164] Nathan T. Hahn, Heechang Ye, David W. Flaherty, Allen J. Bard, C. Buddie Mullins, “Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation”, ACS Nano, 4, 1977-1986 (2010).
[165] Gul Rahman, Oh-Shim Joo, “Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes”, Int. J. Hydrog. Energy, 37, 13989-13997 (2012).
[166] Gongming Wang, Yichuan Ling, Damon A. Wheeler, Kyle E. N. George, Kimberly Horsley, Clemens Heske, Jin Z. Zhang, Yat Li, “Facile Synthesis of Highly Photoactive α-Fe2O3-Based Films for Water Oxidation”, Nano Lett., 11, 3503-3509 (2011).
[167] Gerard M. Carroll, Daniel R. Gamelin, “Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes”, J. Mater. Chem. A, 4, 2986-2994 (2016).
[168] Mei Ji, Jinguang Cai, Yurong Ma, Limin Qi, “Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting”, ACS Appl. Mater. Interfaces, 8, 3651-3660 (2016).
[169] Yufei Yuan, Jiuwang Gu, Kai-Hang Ye, Zhisheng Chai, Xiang Yu, Xiaobo Chen, Chuanxi Zhao, Yuanming Zhang, Wenjie Mai, “Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance”, ACS Appl. Mater. Interfaces, 8, 16071-16077 (2016).
[170] Yong-Sheng Hu, Alan Kleiman-Shwarsctein, Arnold J. Forman, Daniel Hazen, Jung-Nam Park, Eric W. McFarland, “Pt-Dopedα-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting”, Chem. Mat., 20, 3803-3805 (2008).
[171] Alan Kleiman-Shwarsctein, Yong-Sheng Hu, Arnold J. Forman, Galen D. Stucky, Eric
W. McFarland, “Electrodeposition of α- Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting”, J. Phys. Chem. C, 112, 15900-15907 (2008).
[172] Kevin Sivula, Florian Le Formal, Michael Grätzel, WO3− Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, “Guest Absorber Approach, Chemistry of Materials”, 21, 2862-2867 (2009).
[173] Aiming Mao, Jung Kyu Kim, Kahee Shin, Dong Hwan Wang, Pil J. Yoo, Gui Young Han, Jong Hyeok Park, “Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation”, J. Power Sources, 210, 32-37 (2012).
[174] Tao Jin, Peng Diao, Qingyong Wu, Di Xu, Dianyi Hu, Yonghong Xie, Mei Zhang, “WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting”, Appl. Catal. B-Environ., 148, 304-310 (2014).
[175] Yongjing Lin, Sa Zhou, Stafford W. Sheehan, Dunwei Wang, “Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting”, J. Am. Chem. Soc., 133, 2398-2401 (2011).
[176] Julien Bachmann, Jing, Mato Knez, Sven Barth, Hao Shen, Sanjay Mathur, Ulrich Gösele, Kornelius Nielsch, “Ordered Iron Oxide Nanotube Arrays of Controlled Geometry and Tunable Magnetism by Atomic Layer Deposition”, J. Am. Chem. Soc., 129, 9554-9555 (2007).
[177] Yang Hou, Fan Zuo, Alex Dagg, Pingyun Feng, “Visible Light-Driven α-Fe2O3 Nanorod/Graphene/BiV1–xMoxO4 Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting”, Nano Lett., 12, 6464-6473 (2012).
[178] Ying Liu, Dong-Ping Wang, Yu-Xiang Yu, Wei-De Zhang, “Preparation and photoelectrochemical properties of functional carbon nanotubes and Ti co-doped Fe2O3 thin films”, Int. J. Hydrog. Energy, 37, 9566-9575 (2012).
[179] Chengbin Liu, Yarong Teng, Ronghua Liu, Shenglian Luo, Yanhong Tang, Liuyun Chen, Qingyun Cai, “Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application”, Carbon, 49, 5312-5320 (2011).
[180] Yang Hou, Fan Zuo, Alex Dagg, Pingyun Feng, “A Three-Dimensional Branched Cobalt-Doped α-Fe2O3 Nanorod/MgFe2O4 Heterojunction Array as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation”, Angew.Chem.Int. Ed., 125, 1286-1290 (2013).
[181] Bin Zhou, Xu Zhao, Huijuan Liu, Jiuhui Qu, C. P. Huang, “Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions”, Appl. Catal. B-Environ., 99, 214-221 (2010).
[182] Yiseul Park, Kenneth J. McDonald, Kyoung-Shin Choi, “Progress in bismuth vanadate
photoanodes for use in solar water oxidation”, Chem. Soc. Rev., 42, 2321-2337 (2013).
[183] Pauline Bornoz, Fatwa F. Abdi, S. David Tilley, Bernard Dam, Roel van de Krol, Michael Graetzel, Kevin Sivula, “A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting”, J. Phys. Chem. C, 118, 16959-16966 (2014).
[184] Kevin Sivula, Radek Zboril, Florian Le Formal, Rosa Robert, Anke Weidenkaff, Jiri Tucek, Jiri Frydrych, Michael Grätzel, “Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach”, J. Am. Chem. Soc., 132, 7436-7444 (2010).
[185] Carlo Alberto Bignozzi, Stefano Caramori, Vito Cristino, Roberto Argazzi, Laura Meda, Alessandra Tacca, “Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes”, Chem. Soc. Rev., 42, 2228-2246 (2013).
[186] Kazuhiro Sayama, Atsushi Nomura, Zhigang Zou, Ryu Abe, Yoshimoto Abe, Hironori
Arakawa, “Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light”, Chem. Commun., 2908-2909 (2003).
[187] Rengui Li, Fuxiang Zhang, Donge Wang, Jingxiu Yang, Mingrun Li, Jian Zhu, Xin Zhou, Hongxian Han, Can Li, “Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4”, Nat. Commun., 4, 1432 (2013).
[188] Akihiko Kudo, Kazuhiro Ueda, Hideki Kato, Ikko Mikami, “Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution”, Catal. Lett., 53, 229-230 (1998).
[189] David James Martin, Kaipei Qiu, Stephen Andrew Shevlin, Albertus Denny Handoko,
Xiaowei Chen, Zhengxiao Guo, Junwang Tang, “Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride”, Angew.Chem.Int. Ed., 53, 9240-9245 (2014).
[190] Zhen-Feng Huang, Lun Pan, Ji-Jun Zou, Xiangwen Zhang, Li Wang, “Nanostructured
bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on
recent progress”, Nanoscale, 6, 14044-14063 (2014).
[191] Aron Walsh, Yanfa Yan, Muhammad N. Huda, Mowafak M. Al-Jassim, Su-Huai Wei, “Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals”, Chem. Mat., 21, 547-551 (2009).
[192] Paul Brack, Jagdeep S. Sagu, T. A. Nirmal Peiris, Andrew McInnes, Mauro Senili, K.
G. Upul Wijayantha, Frank Marken, Elena Selli, “Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties”, Chem. Vapor Depos., 21, 41-45 (2015).
[193] Fatwa F. Abdi, Tom J. Savenije, Matthias M. May, Bernard Dam, Roel van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study”, J. Phys. Chem. Lett., 4, 2752-2757 (2013).
[194] Savio J. A. Moniz, Stephen A. Shevlin, David James Martin, Zheng-Xiao Guo, Junwang Tang, “Visible-light driven heterojunction photocatalysts for water splitting - a critical review”, Energy Environ. Sci., 8, 731-759 (2015).
[195] Tae Woo Kim, Kyoung-Shin Choi, “Nanoporous BiVO4 Photoanodes with Dual-Layer
Oxygen Evolution Catalysts for Solar Water Splitting”, Science, 343, 990-994 (2014).
[196] Shuang Xiao, Haining Chen, Zhengshi Yang, Xia Long, Zilong Wang, Zonglong Zhu, Yongquan Qu, Shihe Yang, “Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 Photoanodes between the BiVO4 and the FTO Side Illumination”, J. Phys. Chem. C, 119, 23350-23357 (2015).
[197] Jinzhan Su, Liejin Guo, Sorachon Yoriya, Craig A. Grimes, “Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting”, Cryst. Growth Des., 10, 856-861 (2010).
[198] Fatwa F. Abdi, Roel van de Krol, “Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes”, J. Phys. Chem. C, 116, 9398-9404 (2012).
[199] K. Itoh, J. O'M. Bockris, “Thin Film Photoelectrochemistry: Iron Oxide”, J. Electrochem. Soc., 131, 1266-1271 (1984).
[200] Alexis Duret, Michael Grätzel, “Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis”, J. Phys. Chem. B, 109, 17184-17191 (2005).
[201] Hen Dotan, Kevin Sivula, Michael Gratzel, Avner Rothschild, Scott C. Warren, “Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger”, Energy Environ. Sci., 4, 958-964 (2011).
[202] Jiayong Gan, Xihong Lu, Bharath Bangalore Rajeeva, Ryan Menz, Yexiang Tong, Yuebing Zheng, “Efficient Photoelectrochemical Water Oxidation over Hydrogen-Reduced Nanoporous BiVO4 with Ni–Bi Electrocatalyst”, ChemElectroChem, 2, 1385-1395 (2015).
[203] Alexander J. E. Rettie, Heung Chan Lee, Luke G. Marshall, Jung-Fu Lin, Cigdem Capan, Jeffrey Lindemuth, John S. McCloy, Jianshi Zhou, Allen J. Bard, C. Buddie Mullins, “Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide”, J. Am. Chem. Soc., 135, 11389-11396 (2013).
[204] Norihiro Aiga, Qingxin Jia, Kazuya Watanabe, Akihiko Kudo, Toshiki Sugimoto, Yoshiyasu Matsumoto, “Electron–Phonon Coupling Dynamics at Oxygen Evolution Sites of Visible-Light-Driven Photocatalyst: Bismuth Vanadate”, J. Phys. Chem. C, 117, 9881-9886 (2013).
[205] Kanak Pal Singh Parmar, Hyun Joon Kang, Amita Bist, Piyush Dua, Jum Suk Jang, Jae Sung Lee, “Photocatalytic and Photoelectrochemical Water Oxidation over Metal-Doped Monoclinic BiVO4 Photoanodes”, ChemSusChem, 5, 1926-1934 (2012).
[206] Alexandre Nell, Andrew “Bean” Getsoian, Sebastian Werner, Lioubov Kiwi-Minsker, Alexis T. Bell, “Preparation and Characterization of High-Surface-Area Bi(1–x)/3V1–xMoxO4 Catalysts”, Langmuir, 30, 873-880 (2014).
[207] Przemyslaw Kwolek, Kacper Pilarczyk, Tomasz Tokarski, Kornelia Lewandowska, Konrad Szacilowski, “BixLa1-xVO4 solid solutions: tuning of electronic properties via stoichiometry modifications”, Nanoscale, 6, 2244-2254 (2014).
[208] Wenjun Luo, Zaisan Yang, Zhaosheng Li, Jiyuan Zhang, Jianguo Liu, Zongyan Zhao, Zhiqiang Wang, Shicheng Yan, Tao Yu, Zhigang Zou, “Solar hydrogen generation from seawater with a modified BiVO4 photoanode”, Energy Environ. Sci., 4, 4046-4051 (2011).
[209] Clara Santato, Marek Odziemkowski, Martine Ulmann, Jan Augustynski, “Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications”, J. Am. Chem. Soc., 123, 10639-10649 (2001).
[210] Ilkay Cesar, Andreas Kay, José A. Gonzalez Martinez, Michael Grätzel, “Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping”, J. Am. Chem. Soc., 128, 4582-4583 (2006).
[211] Jason A. Seabold, Kai Zhu, Nathan R. Neale, “Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport”, Phys. Chem. Chem. Phys., 16, 1121-1131 (2014).
[212] Diane K. Zhong, Maurin Cornuz, Kevin Sivula, Michael Gratzel, Daniel R. Gamelin, “Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation”, Energy Environ. Sci., 4, 1759-1764 (2011).
[213] Fatwa F. Abdi, Nienke Firet, Roel van de Krol, “Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping”, ChemCatChem, 5, 490-496 (2013).
[214] Won Jun Jo, Ji-Wook Jang, Ki-jeong Kong, Hyun Joon Kang, Jae Young Kim, Hwichan Jun, K. P. S. Parmar, Jae Sung Lee, “Phosphate Doping into Monoclinic BiVO4 for Enhanced Photoelectrochemical Water Oxidation Activity”, Angew.Chem.Int. Ed., 51, 3147-3151 (2012).
[215] Sean P. Berglund, Alexander J. E. Rettie, Son Hoang, C. Buddie Mullins, “Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation”, Phys. Chem. Chem. Phys., 14, 7065-7075 (2012).
[216] Yuriy Pihosh, Ivan Turkevych, Kazuma Mawatari, Jin Uemura, Yutaka Kazoe, Sonya Kosar, Kikuo Makita, Takeyoshi Sugaya, Takuya Matsui, Daisuke Fujita, Masahiro Tosa, Michio Kondo, Takehiko Kitamori, “Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency”, Sci Rep, 5, 11141 (2015).
[217] Pratap M. Rao, Lili Cai, Chong Liu, In Sun Cho, Chi Hwan Lee, Jeffrey M. Weisse, Peidong Yang, Xiaolin Zheng, “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation”, Nano Lett., 14, 1099-1105 (2014).
[218] Jinzhan Su, Liejin Guo, Ningzhong Bao, Craig A. Grimes, “Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting”, Nano Lett., 11, 1928-1933 (2011).
[219] Satyananda Kishore Pilli, Rajeswari Janarthanan, Todd G. Deutsch, Thomas E. Furtak,
Logan D. Brown, John A. Turner, Andrew M. Herring, “Efficient photoelectrochemical
water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D- WO3
heterojunction electrodes”, Phys. Chem. Chem. Phys., 15, 14723-14728 (2013).
[220] Yuriy Pihosh, Ivan Turkevych, Kazuma Mawatari, Tomohiro Asai, Takashi Hisatomi, Jin Uemura, Masahiro Tosa, Kiyoshi Shimamura, Jun Kubota, Kazunari Domen, Takehiko Kitamori, “Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting”, Small, 10, 3692-3699 (2014).
[221] Joaquin Resasco, Hao Zhang, Nikolay Kornienko, Nigel Becknell, Hyunbok Lee, Jinghua Guo, Alejandro L. Briseno, Peidong Yang, “TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment”, ACS Cent. Sci., 2, 80-88 (2016).
[222] SocMan Ho-Kimura, Savio J. A. Moniz, Albertus D. Handoko, Junwang Tang, “Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes”, J. Mater. Chem. A, 2, 3948-3953 (2014).
[223] Savio J. A. Moniz, Jun Zhu, Junwang Tang, “1D Co-Pi Modified BiVO4/ZnO Junction
Cascade for Efficient Photoelectrochemical Water Cleavage”, Adv. Energy Mater., 4, 1301590 (2014).
[224] Liwu Zhang, Erwin Reisner, Jeremy J. Baumberg, “Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation”, Energy Environ. Sci., 7, 1402-1408 (2014).
[225] Tae Woo Kim, Kyoung-Shin Choi, “Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer”, J. Phys. Chem. Lett., 7, 447-451 (2016).
[226] A.T. Wolf, Water and human security, J. Contemp. Water Res. Educ., 118, 29 (2001).
[227] World Health Organization (WHO), Guidelines for Drinking Water Quality, Surveillance and Control of Community Supplies, vol. 3, second ed., World Health Organization, Geneva, 1997.
[228] I.J. Drever, The geochemistry of natural waters: surface and groundwater environments, third ed., Prentice Hall, Englewood Cliffs, NJ, 1997.
[229] S. S. Shinde, C. H. Bhosale, K. Y. Rajpure, “Photocatalytic activity of sea water using TiO2 catalyst under solar light”, J. Photochem. Photobiol. B-Biol., 103, 111-117 (2011).
[230] Sang Min Ji, Hwichan Jun, Jum Suk Jang, Hyo Chang Son, Pramod H. Borse, Jae Sung Lee, “Photocatalytic hydrogen production from natural seawater”, J. Photochem. Photobiol. A-Chem., 189, 141-144 (2007).
[231] Yuangang Li, Rongrong Wang, Huajing Li, Xiaoliang Wei, Juan Feng, Kaiqiang Liu, Yongqiang Dang, Anning Zhou, “Efficient and Stable Photoelectrochemical Seawater Splitting with TiO2@g-C3N4 Nanorod Arrays Decorated by Co-Pi”, J. Phys. Chem. C, 119, 20283-20292 (2015).
[232] Wen-Pin Liao, Jih-Jen “Wu, Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells”, J. Mater. Chem., 21, 9255-9262 (2011).
[233] Geng-Jia Chang, Shou-Yen Lin, Jih-Jen Wu, “Room-temperature chemical integration
of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells”,
Nanoscale, 6, 1329-1334 (2014).
[234] Jih-Jen Wu, Ya-Lien Lee, Hsuen-Han Chiang, Daniel Kwan-Pang Wong, “Growth and
Magnetic Properties of Oriented α-Fe2O3 Nanorods”, J. Phys. Chem. B, 110, 18108-18111 (2006).
[235] B. P. Minks, D. Vanmaekelbergh, J. J. Kelly, “Current-doubling, chemical etching and
the mechanism of two-electron reduction reactions at GaAs: Part 2. A unified model”, J. ElectroanaL Chem., 273, 133-145 (1989).
[236] Motonari Adachi, Masaru Sakamoto, Jinting Jiu, Yukio Ogata, Seiji Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, 110, 13872-13880 (2006).
[237] M A Moram and M E Vickers 2009 Rep. Prog. Phys. 72 036502
[238] V. Palermo, M. Palma, P. Samorì, “Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy”, Adv. Mater., 18, 145-164 (2006).
[239] Evtim V. Efremov, Freek Ariese, Cees Gooijer, “Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential”, Anal. Chim. Acta, 606, 119-134 (2008).
[240] C. V. RAMAN and K. S. KRISHNAN, “A New Type of Secondary Radiation”, Nature, 121, 501-502 (1928)
[241] P. Salvador, “Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis”, J. Appl. Phys., 55, 2977-2985 (1984).
[242] Hideaki Yoshitake, Daiki Abe, “Raman spectroscopic study of the framework structure
of amorphous mesoporous titania”, Microporous Mesoporous Mat., 119, 267-275 (2009).
[243] Chin-Jung Lin, Yen-Tien Lu, Chang-Hsun Hsieh, Shu-Hua Chien, “Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting”, Appl. Phys. Lett., 94, 113102 (2009).
[244] Yun Hau Ng, Akihide Iwase, Akihiko Kudo, Rose Amal, “Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting”, J. Phys. Chem. Lett., 1, 2607-2612 (2010).
[245] Anders Hagfeldt, Henrik Lindström, Sven Södergren, Sten-Eric Lindquist, “Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients”, J. Electroanal. Chem., 381, 39-46 (1995).
[246] Chen-Hao Ku, Jih-Jen Wu, “Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells”, Appl. Phys. Lett., 91, 093117 (2007).
[247] Daniel Kwan-Pang Wong, Chen-Hao Ku, Yen-Ru Chen, Guan-Ren Chen, Jih-Jen Wu,
“Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye-
Sensitized Solar Cells”, ChemPhysChem, 10, 2698-2702 (2009).
[248] Akira Yamakata, Taka-aki Ishibashi, Hiroshi Onishi, “Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2: A Time-Resolved Infrared Absorption Study”, J. Phys. Chem. B, 105, 7258-7262 (2001).
[249] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., 95, 69-96 (1995).
[250] Yasumichi Matsumoto, Toru Yoshikawa, Ei‐ichi Sato, “Dependence of the Band Bending of the Oxide Semiconductors on pH, J. Electrochem. Soc., 136 (1989) 1389-1391.
[251] Samuel Crawford, Elijah Thimsen, Pratim Biswas, Impact of Different Electrolytes on
Photocatalytic Water Splitting”, J. Electrochem. Soc., 156, H346-H351 (2009).
[252] Yukihiro Nakabayashi, Yoshio Nosaka, “The pH dependence of OH radical formation
in photo-electrochemical water oxidation with rutile TiO2 single crystals”, Phys. Chem.
Chem. Phys., 17, 30570-30576 (2015).
[253] Akihito Imanishi, Tomoaki Okamura, Naomichi Ohashi, Ryuhei Nakamura, Yoshihiro
Nakato, “Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2 (Rutile)
(110) and (100) Surfaces: Dependence on Solution pH”, J. Am. Chem. Soc., 129, 11569-11578 (2007).
[254] Mathieu S. Prévot, Kevin Sivula, “Photoelectrochemical Tandem Cells for Solar Water
Splitting”, J. Phys. Chem. C, 117, 17879-17893 (2013).
[255] Kazuhiko Maeda, Kazunari Domen, “Photocatalytic Water Splitting: Recent Progress
and Future Challenges”, J. Phys. Chem. Lett., 1, 2655-2661 (2010).
[256] Zhonghai Zhang, Md Faruk Hossain, Takakazu Takahashi, “Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation”, Int. J. Hydrog. Energy, 35, 8528-8535 (2010).
[257] Sang Youn Chae, Pitchaimuthu Sudhagar, Akira Fujishima, Yun Jeong Hwang, Oh-Shim Joo, “Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution”, Phys. Chem. Chem. Phys., 17, 7714-7719 (2015).
[258] Beniamino Iandolo, Bjorn Wickman, Igor Zoric, Anders Hellman, “The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction”, J. Mater. Chem. A, 3, 16896-16912 (2015).
[259] Emil A. Hernandez-Pagan, Nella M. Vargas-Barbosa, TsingHai Wang, Yixin Zhao, Eugene S. Smotkin, Thomas E. Mallouk, “Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells”, Energy Environ. Sci., 5, 7582-7589 (2012).
[260] Bo-Yan Cheng, Jih-Sheng Yang, Hsun-Wei Cho, Jih-Jen Wu, “Fabrication of an Efficient BiVO4–TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation”, ACS Appl. Mater. Interfaces, 8, 20032-20039 (2016).
[261] Paul A. Connor, Kevin D. Dobson, A. James McQuillan, “Infrared Spectroscopy of the TiO2/Aqueous Solution Interface”, Langmuir, 15, 2402-2408 (1999).
[262] Kentaro Mase, Masaki Yoneda, Yusuke Yamada, Shunichi Fukuzumi, “Seawater usable for production and consumption of hydrogen peroxide as a solar fuel”, Nat. Commun., 7, 11470 (2016).
[263] D. L. A. de Faria, S. Venâncio Silva, M. T. de Oliveira, “Raman microspectroscopy of
some iron oxides and oxyhydroxides”, J. Raman Spectrosc., 28, 873-878 (1997).
[264] Shim, S., Duffy, T., “Raman spectroscopy of Fe2O3 to 62 GPa”,. American Mineralogist, 87, 318-326 (2015).
[265] Sundaram, O. N. B. Thin Film Techniques and Applications;Allied Publications: New
Delhi, (2004).
[266] Linlin Peng, Tengfeng Xie, Yongchun Lu, Haimei Fan, Dejun Wang, “Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts”, Phys. Chem. Chem. Phys., 12, 8033-8041 (2010).
[267] Yu-Hsiang Sung, Vadim D. Frolov, Sergei M. Pimenov, Jih-Jen Wu, “Investigation of
charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts”, Phys. Chem. Chem. Phys., 14, 14492-14494 (2012).
[268] Wan-Hsien Lin, Jih-Jen Wu, Mitch M. C. Chou, Yu-Ming Chang, Masahiro Yoshimura,
“Charge Transfer in Au Nanoparticle–Nonpolar ZnO Photocatalysts Illustrated by Surface-Potential-Derived Three-Dimensional Band Diagram”, J. Phys. Chem. C, 118, 19814-19821 (2014).
[269] Yongjing Lin, Guangbi Yuan, Stafford Sheehan, Sa Zhou, Dunwei Wang, “Hematite-based solar water splitting: challenges and opportunities”, Energy Environ. Sci., 4, 4862-4869 (2011).
[270] Florian Le Formal, Kevin Sivula, Michael Grätzel, “The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments”, J. Phys. Chem. C, 116, 26707-26720 (2012).
[271] Akihiko Kudo, Keiko Omori, Hideki Kato, “A Novel Aqueous Process for Preparation
of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties”, J. Am. Chem. Soc., 121, 11459-11467 (1999).
[272] Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. 〈https://doi.org/10.1520/G0173-03R12〉, 2012.
[273] Ragip A. Pala, Andrew J. Leenheer, Michael Lichterman, Harry A. Atwater, Nathan S.
Lewis, “Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes”, Energy Environ. Sci., 7, 3424-3430 (2014).
[274] Hye Won Jeong, Tae Hwa Jeon, Jum Suk Jang, Wonyong Choi, Hyunwoong Park, “Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance”, J. Phys. Chem. C, 117, 9104-9112 (2013).
[275] Min Zhou, Jian Bao, Yang Xu, Jiajia Zhang, Junfeng Xie, Meili Guan, Chengliang Wang, Liaoyong Wen, Yong Lei, Yi Xie, “Photoelectrodes Based upon Mo:BiVO4 Inverse Opals for Photoelectrochemical Water Splitting”, ACS Nano, 8, 7088-7098 (2014).
[276] Qifeng Zhang, Christopher S. Dandeneau, Xiaoyuan Zhou, Guozhong Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells”, Adv. Mater., 21, 4087-4108 (2009).
[277] Chun-Te Wu, Jih-Jen Wu, “Room-temperature synthesis of hierarchical nanostructures
on ZnO nanowire anodes for dye-sensitized solar cells”, J. Mater. Chem., 21, 13605-13610 (2011).
[278] Jih-Jen Wu, Wen-Pin Liao, Masahiro Yoshimura, “Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications”, Nano Energy, 2, 1354-1372 (2013).
[279] Chun-Te Wu, Wen-Pin Liao, Jih-Jen Wu, “Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells”, J. Mater. Chem., 21, 2871-2876 (2011).
[280] J. Yu, A. Kudo, “Effects of Structural Variation on the Photocatalytic Performance of
Hydrothermally Synthesized BiVO4”, Adv. Funct. Mater., 16, 2163-2169 (2006).
[281] Jason A. Seabold, Kyoung-Shin Choi, “Efficient and Stable Photo-Oxidation of Water
by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst”, J. Am. Chem. Soc., 134,) 2186-2192 (2012.
[282] Chia-Yu Lin, Dirk Mersch, David A. Jefferson, Erwin Reisner, “Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes”, Chem. Sci., 5, 4906-4913 (2014).
[283] Gerard M. Carroll, Diane K. Zhong, Daniel R. Gamelin, “Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe2O3 photoanodes”, Energy Environ. Sci., 8, 577-584 (2015).
[284] Heechang Ye, Hyun S. Park, Allen J. Bard, “Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy”, J. Phys. Chem. C, 115, 12464-12470 (2011).
[285] Donge Wang, Rengui Li, Jian Zhu, Jingying Shi, Jingfeng Han, Xu Zong, Can Li, “Photocatalytic Water Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst”, J. Phys. Chem. C, 116, 5082-5089 (2012).
[286] Roel van de Krol, Michael Gra¨tzel, “Photocelectrochemical Hydrogen Production”, Springer, New York, p75- p75 (2011).
校內:2022-11-03公開