簡易檢索 / 詳目顯示

研究生: 劉子頌
Liu, Tzu-Sung
論文名稱: 雙動式四汽缸α型史特靈引擎之理論與實驗分析
Theoretical and Experimental Analysis of a Double-Acting Four-Cylinder α-Type Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 史特靈引擎雙動式四氣缸擺軛式傳動機構軸功性能量測原型機設計
外文關鍵詞: Stirling engine, Double-acting, Four-cylinder, Wobble yoke mechanism, Shaft power, Performance measurement, Design of prototype
相關次數: 點閱:176下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討雙動式四氣缸史特靈引擎之原型機設計與實驗結果分析,透過實驗結果結合理論模式結果來觀察理論模式與實驗是否吻合。因此,以設計雙動式四氣缸史特靈引擎之原型機以進行性能量測及驗證擺軛式傳動機構為目標。本論文使用之理論模式為針對單腔室所做的分析,單腔室又分為膨脹室、加熱室、再生室、冷卻室與壓縮室,探討子腔室內壓力、體積、溫度與質量變化之結果,考慮工作流體所造成之壓力損失並計算引擎單腔室之功率與熱效率。而原型機的設計主要目標為設計複雜度較低的機構來避免過多的摩擦力及引擎漏氣的可能,以提高原型機的可行性,進而得到實驗結果。最後以實驗結果為準來修正理論模型,並透過理論模式提供原型機設計性能增進可能之建議。根據實驗結果,以四氣缸等起始壓力填充10bar之氦氣、加熱溫度1000 K、冷卻溫度300 K之條件下於轉速750 rpm時軸功率可達25.9 W,同時熱效率最大可達7.06%。

    This thesis discusses the prototype design and experimental results of a double-action four-cylinder Stirling engine, and observes whether the theoretical model and experiment results fit together or not. The objective is to design a prototype of a double-action four-cylinder Stirling engine for performance measurement and verification of the Wobble yoke mechanism. The theoretical model of this paper is used to analyze single chamber, which is divided into expansion chamber, heating chamber, regeneration chamber, cooling chamber and compression chamber. The main objective of prototyping is to design mechanisms with low complexity to avoid excessive friction loss and the possibility of gas leakage from engine, so as to improve the feasibility of prototyping and obtain experimental results. Finally, the theoretical model is revised based on the experimental results, and the theoretical model will provide suggestions for improving the design for better performance. According to the results of the experiment, the shaft power can reach 25.9 W at 750 rpm under the initial pressure of 10 bar of helium gas, heating temperature 1000 K and cooling temperature 300 K. In this case, the thermal efficiency reaches 7.06%.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號索引 XVI 第一章 前言 1 1.1 研究背景 1 1.2 史特靈引擎簡介 2 1.2.1 單氣缸與多氣缸史特靈引擎 2 1.3 雙動式史特靈引擎 3 1.3.1 單動式與雙動式構型 5 1.3.2 雙動式四氣缸史特靈引擎之運作原理 6 1.4 研究目的 7 1.5 論文架構 8 第二章 引擎設計與實驗架構 9 2.1 雙動式四氣缸史特靈引擎之傳動機構 9 2.1.1 擺軛傳動機構 10 2.2 引擎零件設計 11 2.2.1 活塞 11 2.2.2 氣缸 12 2.2.3 相鄰氣缸間之氣體流道 13 2.2.4 旁通閥 13 2.2.5 水冷套件 14 2.2.6 傳動機構 14 2.2.7 傳動輸出軸與飛輪 15 2.2.8 壓力腔外殼 15 2.2.9 陶瓷纖維電熱器 16 2.2.10 實驗架設 16 2.2.11 引擎組裝與測試 17 2.3 實驗量測設備 18 第三章 理論模式 21 3.1 引擎參數設定 21 3.1.1 活塞位移方程式與各腔室體積 21 3.1.2 各腔室熱阻 24 3.1.3 初始條件與邊界條件 26 3.2 熱力模式 27 3.2.1 壓力變化 28 3.2.2 質量流率 30 3.2.3 溫度與壓力 31 3.2.4 壓力損失 37 3.2.5 引擎輸出功率與熱效率 40 第四章 結果與討論 43 4.1 實驗分析 43 4.1.1 氣密設計探討 46 4.1.2 材料選擇探討 46 4.1.3 再生器選擇探討 47 4.1.4 冷卻器設計探討 48 4.1.5 加熱頭材質選擇探討 48 4.1.6 引擎故障探討 49 4.2 理論分析 50 4.2.1 單腔室基準組模擬結果 50 4.2.2 基準組參數分析 51 第五章 結論 56 5.1 研究結論 56 5.2 未來改進 58 參考文獻 60

    1. Barrage, L., and Furst, J. (2019). Housing investment, sea level rise, and climate change beliefs. Economics Letters, 177, 105-108.
    2. Abdullah, S., Sopian, K., and Ali, Y. (2000). Design of an environmental-friendly solar water pumping system using the Stirling engine. In RECEE 2000 Regional Conference on Energy and Environment Proceedings: the Emerging Energy Technologies.
    3. Thombare, D. G., and Verma, S. K. (2008). Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 12(1), 1-38.
    4. Hsu, S. T., Lin, F. Y., and Chiou, J. S. (2003). Heat-transfer aspects of Stirling power generation using incinerator waste energy. Renewable Energy, 28(1), 59-69.
    5. Formosa, F., and Despesse, G. (2010). Analytical model for Stirling cycle machine design. Energy Conversion and Management, 51(10), 1855-1863.
    6. Organ, A. J. (1997). The regenerator and the Stirling engine.
    7. Kongtragool, B., and Wongwises, S. (2003). A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable Energy Reviews, 7(2), 131-154.
    8. Sheykhi, M., Chahartaghi, M., Balakheli, M. M., Hashemian, S. M., Miri, S. M., and Rafiee, N. (2019). Performance investigation of a combined heat and power system with internal and external combustion engines. Energy Conversion and Management, 185, 291-303.
    9. Wu, Z., Yu, G., Zhang, L., Dai, W., and Luo, E. (2014). Development of a 3 kW double-acting thermoacoustic Stirling electric generator. Applied Energy, 136, 866-872.
    10. Organ, A. J., and Finkelstein, T. (2009). Air Engines: the History, Science, and Reality of the Perfect Engine. ASME, New York.
    11. Haikarainen, C., Tveit, T. M., Saxén, H., and Zevenhoven, R. (2020). Simulation of pressure imbalance phenomena in a double-acting α-cycle Stirling engine. Energy Conversion and Management, 221, 113172.
    12. Xu, J., Yu, G., Zhang, L., Dai, W., and Luo, E. (2015). Numerical investigation on a 300 Hz pulse tube cryocooler driven by a double-acting thermoacoustic heat engine. Energy Procedia, 75, 1484-1489.
    13. Hu, J. Y., Luo, E. C., Zhang, L. M., Wang, X. T., and Dai, W. (2013). A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids. Applied Energy, 112, 1166-1170.
    14. Formosa, F., Badel, A., and Lottin, J. (2014). Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine. Energy Conversion and Management, 78, 753-764.
    15. Gord, M. F., and Jannatabadi, M. (2014). Simulation of single acting natural gas Reciprocating Expansion Engine based on ideal gas model. Journal of Natural Gas Science and Engineering, 21, 669-679.
    16. Daoud, J. M., and Friedrich, D. (2019). Design of the multi-cylinder Stirling engine arrangement with self-start capability and reduced vibrations. Applied Thermal Engineering, 151, 134-145.
    17. Zhang, S., Wu, Z. H., Zhao, R. D., Yu, G. Y., Dai, W., and Luo, E. C. (2014). Study on a basic unit of a double-acting thermoacoustic heat engine used for dish solar power. Energy Conversion and Management, 85, 718-726.
    18. Cordoba, S., Das, A., Leon, J., Garcia, J. M., and Warsinger, D. M. (2021). Double-acting batch reverse osmosis configuration for best-in-class efficiency and low downtime. Desalination, 506, 114959.
    19. 馮典樂,雙動四汽缸史特靈引擎之理論分析與設計,國立成功大學航空太空工程學系學位論文,民國106年。
    20. 李駿閎,雙動式四汽缸史特靈引擎之動力模型分析,國立成功大學航空太空工程學系學位論文,民國107年。
    21. Cheng, C. H., Yang, H. S., Tan, Y. H., and Li, J. H. (2020). Modeling of the Dynamic Characteristics and Performance of a Four-Cylinder Double Acting Stirling Engine. International Journal of Energy Research.
    22. Cheng, C. H., Yang, H. S., and Tan, Y. H. (2021). Theoretical Model of a α-type Four-cylinder Double-acting Stirling Engine Based on Energy-Approached Method. Accepted, Energy.
    23. 楊錫堯,四汽缸雙動式史特靈引擎之三維熱流場數值模擬,國立成功大學航空太空工程學系學位論文,民國106年。
    24. 陳亦涵,四汽缸雙動式α型史特靈引擎之最佳化,國立成功大學航空太空工程學系學位論文,民國107年。
    25. Çınar, C., Aksoy, F., Solmaz, H., Yılmaz, E., and Uyumaz, A. (2018). Manufacturing and testing of an α-type Stirling engine. Applied Thermal Engineering, 130, 1373-1379.
    26. Clucas, D. M. (1993). Development of a Stirling engine battery charger based on a low cost wobble mechanism.
    27. Abdullah, S., Yousif, B. F., and Sopian, K. (2005). Design consideration of low temperature differential double-acting Stirling engine for solar application. Renewable Energy, 30(12), 1923-1941.
    28. Chowdhury, S., Bose, B., Arif, A. F. M., and Veldhuis, S. C. (2020). Improving coated carbide tool life through wide peening cleaning (WPC) during the wet milling of H13 tool steel. Wear, 450, 203259.
    29. 林強,300-W 級史特靈引擎理論模式與實作,國立成功大學航空太空工程學系學位論文,民國101年。
    30. Silva, E. A. A., Ochoa, A. A. V., and Henríquez, J. R. (2019). Analysis and runners length optimization of the intake manifold of a 4-cylinder spark ignition engine. Energy Conversion and Management, 188, 310-320.
    31. Urieli, I., and Berchowitz, D. M. (1984). Stirling cycle engine analysis.
    32. Ackermann, R. A. (2013). Cryogenic Regenerative Heat Exchangers. Springer Science & Business Media.
    33. Bergman, T. L., Incropera, F. P., DeWitt, D. P., and Lavine, A. S. (2011). Fundamentals of Heat and Mass Transfer. John Wiley & Sons.
    34. Kays, W. M., and London, A. L. (1984). Compact heat exchangers.
    35. Barron, R. F., and Nellis, G. F. (2017). Cryogenic Heat Transfer. CRC press.
    36. Zhao, T. S., and Cheng, P. (1996). Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow. Cryogenics, 36(5), 333-341.
    37. Tlili, I., and Sa’ed, A. (2013). Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy Conversion and Management, 68, 149-160.
    38. Haywood, R. W. (2013). Analysis of Engineering Cycles: Thermodynamics and Fluid Mechanics Series. Elsevier.
    39. Cheng, C. H., and Yu, Y. J. (2011). Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models. Renewable Energy, 36(2), 714-725.
    40. Féniès, G., Formosa, F., Ramousse, J., and Badel, A. (2015). Double acting Stirling engine: Modeling, experiments and optimization. Applied Energy, 159, 350-361.
    41. Kongtragool, B., and Wongwises, S. (2008). A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source. Solar Energy, 82(6), 493-500.

    下載圖示 校內:2023-07-16公開
    校外:2023-07-16公開
    QR CODE