| 研究生: |
李宜芳 Lee, Yi-Fang |
|---|---|
| 論文名稱: |
1-x(Bi0.5Na0.5)TiO3 –xBa(Ti0.95Zr0.05)O3 系統之合成、晶體結構、及壓電性質 Synthesis, Crystal Structure, and Piezoeielectric Properties of 1-x(Bi0.5Na0.5)TiO3 –xBa(Ti0.95Zr0.05)O3 System |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 鐵電 、無鉛壓電 |
| 外文關鍵詞: | lead-free piezoelectric, ferroelectric |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著國際環保意識的提高,使得許多含有對於環境及人體健康有疑慮的元素及材料已漸漸被禁止使用,而對於壓電陶瓷材料來說,也必定會朝開發出更優良的無鉛壓電材料方向去努力。
(Bi0.5Na0.5)TiO3為目前無鉛壓電材料中較具有潛力的材料系統,故本研究將以 (Bi0.5Na0.5)TiO3當作 matrix添加 Ba(Ti0.95Zr0.05)O3以合成出具有 MPB (morphotropic phase boundary) 存在之固溶系統,並針對此系統做詳盡的晶體結構及基本電性質的分析,以連結電性質和晶體結構之關係,並藉由實驗結果探討其應用為壓電材料的可能性。
經實驗結果可以確定以下幾點,第一,合成出 (1-x)(Bi0.5Na0.5)TiO3 - x Ba(Ti0.95Zr0.05)O3單一相存在的固溶系統,且本實驗中每一個成分點之燒結相對密度均達 97% 以上。第二,詳盡說明本系統隨著成份變動使其晶體變化的過程,在添加量 x介於0.06~0.08之間時,為 Hexagonal 與Tetragonal 兩相共存的區域,且經由計算得到其晶格常數、晶格體積及理論密度值。並經由 Rietveld 分析得到晶體結構中各離子的分布及偏移情形。第三,得到一系列成份於不同頻率下的介電常數,並提出晶體結構中氧八面體內陽離子中心與陰離子中心的相對位移量,為影響本系統在 1 MHz下之介電性質表現的主要因素。第四,確定此固溶系統具有壓電性,且最佳的 kp值可達 36.1%。第五,介於本系統之 MPB區域內的成分點,其介電常數及 kp值均明顯比周圍兩側要佳。
With the raising of the environmental sense, some materials which contain harmful health elements will be inhibited. For the piezoelectric materials, new lead-free piezoelectric materials with better electric properties will also be developed.
(Bi0.5Na0.5)TiO3 is a excellent candidate system in lead-free piezoelectric materials system at present. In this research, (Bi0.5Na0.5)TiO3 is matrix and Ba(Ti0.95Zr0.05)O3 will be doped into this composition system to synthesize (1-x) (Bi0.5Na0.5)TiO3 - x Ba(Ti0.95Zr0.05)O3 solid solution system which contains MPB (morphotropic phase boundary) region. The crystal structure and electric properties of this system were studied detail. According to the changes of the crystal structure and electric properties which resulted from the composition variation, the relationship between the crystal structure and electric properties, even the possibility of application were also studied further in this research.
The result show that: First, (1-x) (Bi0.5Na0.5)TiO3 - x Ba(Ti0.95Zr0.05)O3 solid solution system could be synthesized successfully in this research. And the relative density of sintered bulks of each composition can achieve 97% or over. Second, the phase transformation with composition variation of this system was showed in detail in this research. The MPB, Hexagonal and Tetragonal coexist, was found when x between 0.06 and 0.08. Besides, the cell parameters, cell volume, and theoretical density were also obtained after the cell parameters calculation. And the Rietveld method was adopted to get the relative position and displacement of each atom in the crystal structure. Third, get the dielectric constant of each composition at different frequency and propose the main factors which affect the dielectric properties in 1 MHz are the relative displacement between cation and anion center in oxygen-octahedral structure. Fourth, confirm this solid solution system has piezoelectric properties, and the value can get 36.1%. Fifth, dielectric constant and kp in MPB region are superior than surroundings.
[1] Y. Lin, “Effects of Eu2O3 on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics,” J. Mater. Sci., B, 99, 449-452, 2003.
[2] H. Nagata and T. Takenaka, “Lead-free piezoelectric ceramics of
Bi1/2Na1/2TiO3-KNbO3-1/2(Bi2O3*Sc2O3) system,” Jpn. J. Appl. Phys., 37,
5311-5314, 1998.
[3] X. X. Wang, “Electromechanical and ferroelectric properties of Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–BaTiO3 lead-free piezoelectric ceramics,” Appl. Phys. Letts., 85[1], 91-93, 2004.
[4] M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon, Oxford, 1977.
[5] 吳朗, 電子陶瓷-介電, 全欣科技圖書, pp. 222-24, 1994.
[6] 吳朗, 電子陶瓷-介電, 全欣科技圖書, pp. 224-27, 1994.
[7] G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, 1960.
[8] V. A. Bokov and I. E. Mylnikova, “Ferroelectric properties of monocrystal of new perovskite compounds,” Sov. Phys., Solid State (Engl.Transl.), 2, 11, 2428-2432, 1961.
[9] V. A .Bokov and I. E. Mylnikova, “Electrical and optical properties of single crystals of ferroelectrics with a diffuse phase transition,” Sov. Phys., Solid State (Engl.Transl.), 3, 3, 613-623, 1961.
[10] N. Setter and L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15, 2478-2482, 1980.
[11] N. Setter and L. E. Cross, “The role of B-site cation disorder in Diffusion phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51[8], 4356-60, 1980.
[12] S.B. Vakhrushev, V. A. Isupov, B. E. Kvyakovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky and P. P. Syrnikov. “Phase transition and soft mode in sodium bismuth titanate,” Ferroelectrics, 63, 153-160., 1985.
[13] H. S. Gu, “Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics,” Mater. Lett, 59, 1649-1652, 2005.
[14] T. Takenaka, K. I. Maruyama and K. Sakata, “Bi1/2Na1/2TiO3- BaTiO3 system for lead-free piezoelectric ceramics,” Jpn. J .Appl. Phys., 30 [9B], 2236-2239, 1991.
[15] B. J. Chu, “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics,” J. Eur. Ceram. Soc., 22, 2115-2121, 2002.
[16] Q. Xu, “Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)1−xBaxTiO3 ceramics,” Mat. Chem. and Phys., 90, 111-115, 2005.
[17] Y. Hosono, “Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3–BaTiO3,” Jpn. J. Appl. Phys., 40, 5722-5726, 2001.
[18] X. Wang, “Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Solid State Commun., 125, 395-399, 2003.
[19] C. D. Feng, “Electrical properties of La3+-Doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics,” Jpn. J. Appl. Phys., 42, 7387-7391, 2003.
[20] H.D. Li, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic-phase-boundary composition,” Mater. Lett., 58, 1194-1198, 2004.
[21] X. Wang, “(Bi1/2Na1/2)TiO3-Ba(Cu1/2W1/2)O3 lead-free piezoelectric ceramics,” J. Am. Ceram. Soc., 86[10], 1809-1811, 2003.
[22] W. Chen, “Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ferroelectric ceramics,” Ceram. Inter., 31, 139-142, 2005.
[23] D. Hennings, A. Schnell and G. Simon, “Diffuse Ferroelectric Phase Transitions
in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., 65, 539, 1982.
[24] X. G. Tang, “Effect of grain size on the dielectric properties and tunabilities of
sol-gel derived Ba(Zr0.2Ti0.8)O3,” Solid State Commun., 121, 297, 2004.
[25] .M. Mcquarrie, ”Structural behavior in the system (Ba,Ca,Sr)TiO3 and it's Relation to ceramic dielectric characteristics,” J. Am. Ceram. Soc., 38[12], 444-449, 1955.
[26] J. A. Basmajian and R. C. Devries , ”Phase equilibria in the System BaTiO3~ SrTiO3,” J. Am. Ceram. Soc., 40[11], 373-376, 1959.
[27] R. Farhi and M. El Marssi, “A raman and dielectric study of ferroelectric Ba(Ti1-xZrx)O3 ceramics,” Eur. Phys. J. B, 9, 599-604 ,1999.
[28] P. S. Dobal, A. Dixit and R. S. Katiya, “Micro-raman scattering and dielectric investigatons of phase transition behavior in the BaTiO3-BaZrO3 system,” J. Appl. Phys., 89[12], 8085-8091, 2001.
[29] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, 1976.
[30] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, 1971.
[31] A. M. Glazer, “Simple ways of determining perovskite structure,” Acta Cryst ., A31, 756-762, 1975.
[32] H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, and Y. W. Song, “Microstructural observations in barium calcium magnesium niobate,” J. Am. Ceram. Soc., 83, 2267-2272, 2000.
[33] O. Muller and R. Roy, The major ternary structural families, Springer, New York, 1974.
[34] 魏樂利,交流極化場對壓電陶瓷特性之影響。國立成功大學電機工程研究所碩士論文,1995。
[35] 吳朗,電子陶瓷(壓電),全欣科技圖書,1994
[36] 黃茂松,Pb(Ni1/3Sb2/3)O3-PbZrO3-PbTiO3三成份系壓電陶瓷材料之壓電特性研究。國立成功大學電機工程研究所碩士論文,1996。
[37] 謝煜弘,電子材料,新文京開發出版有限公司,2003。
[38] C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate
structure type materials, Ph. D. thesis, The Pennsylvania State University, U.
S. A., 1990.
[39] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for
structure refinement,” Acta Crystallogr., 22, 151, 1967.
[40] A. C. Larson and R. B. V. Dreele, General structure analysis system,
Los Alamos National Laboratory, Los Alamos, 1988.
[41] A.S. Bhalla, R. Guo and R. Roy, “The perovskite structure – a review of
its role in ceramic science and technology,” Mat.. Res. Innovat., 4, 3-26, 2000.
[42] T. Takenaka, “Current status and prospects of lead-free piezoelectric
Ceramics,” J. Eur. Ceram. Soc., 25, 2693-2700, 2005.
[43] 劉文貴,(Na0.5K0.5)NbO3 - SrZrO3 系統之合成、分析、及介電性質。國立成功大學資源工程研究所碩士論文,2005。
[44] R. Palai, R. N. P. Choudhary and H. S. Tewari, “Antiferroelectric phase transition
in Pb(Mg1/2X1/2)O3 (X = Mo and W),” Mater. Chem. Phys., 73 86-92, 2002.
[45] R. E. Eitel, T. R. Shrout and C. A. Randall, “Tailoring properties and performance of (1 - x)BiScO3-xPbTiO3 based piezoceramics by Lanthanum substitution,” Jpn. J. Appl. Phys., 43[12], 8146-8150, 2004.
[46] O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag,Berlin, 1974.