簡易檢索 / 詳目顯示

研究生: 林祐丞
Lin, Yo-Chen
論文名稱: 以有限元素法分析熱電特性對熱電致冷器冷卻性能之影響
Effect of thermoelectric properties on the cooling performance of thermoelectric cooler by finite element method
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 熱電致冷器怕爾帖效應賽貝克係數性能係數
外文關鍵詞: Thermoelectric Cooler, Peltier Effect, Seebeck Coefficient, Cooling Performance
相關次數: 點閱:140下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料可在全球永續能源解決方案中扮演重要的角色。由於熱電致冷器的固態設備沒有移動部件,故其安靜、可靠,並有可擴展性,這些優點都刺激了對熱電材料的興趣。微電子元件可在非常小的區域內產生巨大熱通量,也被稱為熱點。目前冷卻技術正迅速的達到極限,因此高效率熱電致冷器在散熱管理中將發揮重要的作用。熱電冷卻器的性能被材料之熱電特性所限制,一個好的熱電材料需要有高的熱電優值。基本上,冷卻功率由怕爾帖效應提昇,由熱傳導與焦耳熱降低。優先選擇高賽貝克係數、低導熱係數、高導電率的材料。本研究參考各項文獻,訂出三維模型,藉由ANSYS模擬,分析並討論熱電特性對熱電致冷器性能係數之影響。研究發現溫差與電阻率上升、賽貝克係數減少會導致性能係數降低。

    Thermoelectric materials could play an important role in a global sustainable energy solution. As thermoelectric coolers are solid-state devices with no moving parts, they are silent, reliable and scalable. These advantages have stimulated an interest in thermoelectric materials. Microelectronic devices can generate huge heat fluxes in very small areas (also called hot-spot). The current cooling technologies are fast reaching their limits. So an efficient cooler would play a crucial role in the thermal management. It is well known that the efficiency of thermoelectric coolers is limited by the thermoelectric properties of materials. A good thermoelectric material must have a high figure of merit (ZT). Basically, the cooling power arises from the Peltier effect and is degraded by the conduction heat transfer and Joule heating. Materials with a large Seebeck coefficient, a small thermal conductivity, and a large electric conductivity are thus preferred. This study refers to each reference documents and set up three-dimensional model, and utilizing ANSYS simulation. Then analysis and discusses the effect of thermoelectric properties on the cooling performance of thermoelectric cooler. From our results, the cooling performance decreases as the temperature difference increase, electrical resistivity increase and Seebeck coefficient decrease.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的與動機 6 1-4 本文架構 7 第二章 熱電效應原理及應用 8 2-1 熱電效應 8 2-2 熱電優值 9 2-3 熱電設備之優缺點與實際應用 11 2-4 基本運作原理 13 2-5 熱電材料 14 第三章 基本理論 15 3-1 熱傳問題 15 3-1-1 接觸熱阻 15 3-2 有限元素分析法 17 3-2-1 熱傳導 17 3-2-2 電磁場基礎 19 3-2-3 熱電基本方程 21 3-2-4 熱電矩陣推導 23 3-2-5 接觸阻抗 24 第四章 熱電致冷器冷卻性能之數值模擬 26 4-1 系統建構 26 4-2 數值計算 28 4-3 基本假設 31 4-4 模擬驗證 32 4-5 結果與討論 35 4-5-1 溫差 35 4-5-2 賽貝克係數 41 4-5-3 電阻率 44 第五章 結論與未來展望 49 5-1 結論 49 5-2 未來展望 51 參考文獻 52 附錄A 55 自述 60

    [1] T. J. Seebeck, “Magnerische polarization der metalle und erze durch temperature-differenz,” Abhand Deut. Akad, Wiss, Berlin, pp. 265-373, 1822.
    [2] J. C. Peltier, “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, pp. 371-387, 1834.
    [3] E. Altenkirch, “Physikalische Zeitschrift,” Vol. 12, pp. 920-924, 1911.
    [4] A. F. Ioffe, “Semiconductor thermoelements and thermoelectric cooling,” Infosearch, London, 1957.
    [5] H. J. Goldsmid, “Principles of thermoelectric devices,” British Journal of Applied Physics, Vol. 11, pp. 209-217, 1960.
    [6] M. H. Norwood, “A comparison of theory and experiment for a thermoelectric cooler,” Journal of Applied Physics, Vol. 32, pp. 2559-2563, 1961.
    [7] F. Volklein, Gao Min, D. M. Rowe, “Modeling of a microelectromechanical thermoelectric cooler,” Sensors and Actuators, Vol.75, pp. 95-101, 1999.
    [8] Gao Min, D. M. Rowe, “Cooling performance of integrated thermoelectric microcooler,” Solid-State Electronics, Vol. 43, pp. 923-929, 1999.
    [9] D. J. Yao, C. J. Kim, and G. Chen, “Design of thin-film thermoelectric microcoolers,” HTD-Vol. 366-2, Proceedings of the ASME Heat Transfer Division, Vol. 2, pp. 345-351, 2000.
    [10] L.W. da Silva, M, Kaviany, “Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport,” Int. J. Heat Mass Transfer, Vol. 47, pp. 2417-2435, 2004.
    [11] R. Yang and G. Chen, “Multistage thermoelectric microcoolers,” Journal of Applied Physics, Vol. 95, pp. 8226-8232, 2004.
    [12] Y. Kraftmakher, “Simple experiments with a thermoelectric module,” Institute of Physics Publishing European Journal of Physics, Vol. 26, pp. 959-967, 2005.
    [13] L. N. Vikhor, L. I. Anatychuk, “Theoretical evaluation of maximum temperature difference in segmented thermoelectric coolers,” Applied Thermal Engineering, Vol. 26, pp. 1692-1696, 2006.
    [14] K. H. Lee, O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. of Heat and Mass Transfer, Vol. 50, pp. 1982-1992, 2007.
    [15] A. F. Milis, “Basic heat and mass transfer,” Irwin, USA, 1995.
    [16] ANSYS, Inc. ANSYS 12.1, USA, 2009.
    [17] D. Joyeux, “Experimental investigation of fire door behavior during a natural fire,” Fire Safety Journal, Vol. 37, pp. 605-614, 2002.
    [18] H. Yuncu, “Thermal contact conductance of nominally flat surfaces,” Heat and Mass Transfer, Vol. 43, pp. 1-5, 2006.
    [19] M. H. Shojaefard and K. Goudarzi “The Numerical Estimation of Thermal Contact Resistance in Contacting Surfaces,” American Journal of Applied Sciences, Vol. 5, pp. 1566-1571, 2008.
    [20] W. R. Smythe, “Static and Dynamic Electricity,” McGraw-Hill Book Co., New York, 1950.
    [21] L. D. Landau and E. M. Lifshitz, “The Electrodynamics of Continuous Media,” Course of Theoretical Physics, Vol. 8, 2nd Edition, Butterworth-Heinemann, Oxford, 1984.
    [22] E. E. Antonova, D. C. Looman, “Finite elements for thermoelectric device analysis in ANSYS,” ICT 2005, 24th International Conference on Thermoelectrics, pp. 215-218, 2005.
    [23] A. Lahmar, T. P. Nguyen, D. Sakami, S. Orain, Y. Scudeller, F. Danes, “Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates,” Thin Solid Films, Vol. 389, pp. 167-172, 2001.
    [24] S. Orain, Y, Scudeller, S. Garcia, T. Brousse, “Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances,” Int. J. Heat Mass Transfer, Vol. 44, pp. 3973-3984, 2001.
    [25] H. J. Goldsmid, “Electronic Refrigeration,” Pion, London, 1986.
    [26] D. Ilzycer, A. Sher, M. Shiloh, “Electrical contacts to thermoelectric bismuth telluride based alloys,” Proceedings of the 3rd International Conference on Thermoelectric Energy Conversion, pp. 200-202, 1980.
    [27] R. C. Jaeger, “Introduction to Microelectronic Fabrication,” Addison-Wesley, Vol. 5, 1988.
    [28] S. Wolf, “Silicon Processing for the VLSI Era,” Lattice Press, California, 1990.
    [29] M. Kaviany, “Principles of Heat Transfer,” Wiley, New York, 2001.
    [30] K. H. Lee, H. Kim, O. J. Kim, “Effect of thermoelectric and electrical properties on the cooling performance of a micro thermoelectric cooler,” Journal of Electronic Materials, Vol. 39, pp. 1566-1571, 2010.

    下載圖示 校內:2016-08-26公開
    校外:2021-07-07公開
    QR CODE