簡易檢索 / 詳目顯示

研究生: 黃丙翰
Huang, Ping-Han
論文名稱: 並列電極陣列式真空陰極電弧推進器之研發、設計與測試
The Development, Design and Demonstration of Vacuum Cathode Arc Thruster with Parallel Electrode Array
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 電力推進器真空電弧推進器並列電極陣列式真空陰極電弧推進器電感儲能裝置快速法拉第杯
外文關鍵詞: electric propulsion, vacuum cathode arc thruster with parallel electrode array, inductive energy storage device, fast Faraday cup, vacuum arc thruster
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 立方衛星的概念是在1999年被提出,具有體積小、重量輕巧且製作成本低等優勢,因此大量應用於學術的使用。而應用於衛星的推進器主要的功能有變換衛星軌道與傾角、衛星姿態控制以及衛星脫軌等。電力推進器為太空推進器的一類,其中又可分為連續式推進器與脈衝式推進器。著名的連續式電力推進器有霍爾推進器、離子引擎,該類的推進器體積較大且電力需求也較高,但是擁有極高的比衝值與效率;另外,著名的脈衝式電力推進器有脈衝電漿推進器、真空電弧推進器,該類的推進器有較小的體積與重量,電力需求也較小,但推力、比衝值與效率皆較低。
    本研究則專注於發展適用於立方衛星的電力推進系統。由於立方衛星的體積較小、重量輕且所能提供的電力有限,因此本研究選擇真空電弧推進器進行研發與改良。本研究提出新概念「並列電極陣列式真空陰極電弧推進器」,該推進器具有多個推進單元組合而成,並且預期可以由誘發電極放電誘發主電極放電。研究結果顯示新概念的推進系統可以成功點火。該概念改善傳統真空電弧推進器因系統內的石墨導電層重複附著而導致整體效率下降。此外,本研究亦提出「多層絕緣層」取代傳統真空電弧推進器中的石墨層與絕緣體,該設計應用「三結點(triple junction)」的物理現象,促使真空電弧推進器的點火更為穩定。本研究也改善實驗室已發展的電感儲能裝置,包含改善電感元件的飽和問題等等。此外,本研究也完成一快速法拉第杯並使用示波器等量測儀器得到推進器的各項參數。
    最後,本研究所製作的推進器的誘發電極每發的衝量可達50.867[μN∙s];比衝值可達849.51 [s];效率為22.8%;推力功率比為57.6 [μN/W]。

    This experiment aims to study and optimize the vacuum arc thruster used in space. The experiments include three parts. In the first part, the study designed and made the thruster. Traditional vacuum arc thrusters use thin graphite to help thrusters to work in space, but the thin graphite leads to vacuum arc thrusters working unsteadily and with low efficiency. Therefore, this experiment proposes two innovative designs for improvement. In the second part, the study optimized and improved the inductive storage circuit. The circuit could input low voltage, then output high pulse voltage and make the thrusters operate in a vacuum. Improvement items include solving the problem of inductance saturation, etc. In the third part, this experiment designed and made the fast Faraday cup, which reduces the influence of electromagnetic interference and then measures the pulsed plasma source. The measurement content includes the ion velocity and ion current density of the plasma generated by the thruster. Finally, this experiment combined the measured ion velocity, the weight change of the thruster, and the ideal power output to obtain the impulse bit of the thruster in this research is 50.867 [μN∙s]; the specific impulse is 849.51 [s]; the efficiency is 22.8%; the thrust power ratio is 57.6 [μN/W].

    摘要 I ABSTRACT III 第一章 緒論 VI 第二章 文獻回顧 VIII 第三章 研究方法 X 第四章 研究結果 XII 誌謝 XIII 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號 XXIII CHAPTER 1 緒論 1 1-1 背景 1 1-2 推進器基本參數 3 1-3 立方衛星之推進 5 1-3-1 化學推進器 6 1-3-2 電力推進器 7 1-4 動機與目標 17 CHAPTER 2 文獻回顧 18 2-1 真空電弧推進器的原理 18 2-2 電感儲能裝置原理 25 2-3 量測系統原理 33 CHAPTER 3 研究方法 38 3-1 實驗設置 38 3-1-1 實驗架設 38 3-1-2 實驗方法 39 3-2 真空艙系統 42 3-3 電感儲能裝置設計 44 3-3-1 條件設定 45 3-3-2 最終設計 48 3-4 推進器設計與假設 53 3-4-1 多級推進器設計 53 3-4-2 多層絕緣層設計 56 3-4-3 推進器最終設計 60 3-5 法拉第杯設計 64 CHAPTER 4 研究結果 69 4-1 推進器放電結果 69 4-1-1 多層絕緣層應用 69 4-1-2 並列電極陣列式真空陰極電弧推進器應用 71 4-2 推進器燒蝕率與壽命測試 73 4-3 放電波型 74 4-3-1 誘發電極放電 74 4-3-2 主電極放電 77 4-4 法拉第杯量測 80 4-5 推進器性能 82 CHAPTER 5 結論與未來工作 85 5-1 結論 85 5-2 未來工作 86 參考文獻 88 附錄 91 Appendix A 91 Appendix B 97

    1. Pietzka, M., M. Kühn-Kauffeldt, J. Schein, I. Kronhaus, K. Schilling, T. Mai, and A. Lebeda. Innovative vacuum arc thruster for CubeSat constellations. in International Electric Propulsion Conference, IEPC-2013. 2013.
    2. Krejci, D. and P. Lozano, Space Propulsion Technology for Small Spacecraft. Proceedings of the IEEE, 2018. 106(3): p. 362-378.
    3. Mohite, A.A.M.A., A Detailed Study and Analysis of Cold Gas Propulsion System. 2020.
    4. Goebel, D.M. and I. Katz, Fundamentals of electric propulsion: ion and Hall thrusters. 2008: John Wiley & Sons.
    5. Lemmer, K., Propulsion for CubeSats. Acta Astronautica, 2017. 134: p. 231-243.
    6. Lee, H.-Y., Indigenous Technology Development of a Prototype Arcjet System. 2010.
    7. Tsay, M., J. Frongillo, J. Zwahlen, and L. Paritsky. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer. in 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016.
    8. Yueh-Heng Li, T.-Y.H., Mitchell M. Shen, Yi-Chien Chen, Development of Miniature Radio Frequency Ion Thruster with Inductively Coupled Plasma Source. 2021.
    9. Micci, M.M., Micropropulsion for small spacecraft. Vol. 187. 2000: Aiaa.
    10. Koizumi, H., R. Noji, K. Komurasaki, and Y. Arakawa, Plasma acceleration processes in an ablative pulsed plasma thruster. Physics of plasmas, 2007. 14(3): p. 033506.
    11. Anders, A., I.G. Brown, R.A. MacGill, and M.R. Dickinson, Triggerless' triggering of vacuum arcs. Journal of Physics D: Applied Physics, 1998. 31(5): p. 584.
    12. Mueller, J., R. Hofer, and J. Ziemer, Survey of propulsion technologies applicable to cubesats. 2010.
    13. Zhuang, T., A. Shashurin, L. Brieda, and M. Keidar. Development of micro-vacuum arc thruster with extended lifetime. in 31st International Electric Propulsion Conference. 2009.
    14. Keidar, M., J. Schein, K. Wilson, A. Gerhan, M. Au, B. Tang, L. Idzkowski, M. Krishnan, and I.I. Beilis, Magnetically enhanced vacuum arc thruster. Plasma Sources Science and Technology, 2005. 14(4): p. 661.
    15. Kolbeck, J., A. Anders, I.I. Beilis, and M. Keidar, Micro-propulsion based on vacuum arcs. Journal of Applied Physics, 2019. 125(22): p. 220902.
    16. Li, Y.-H., J.-Y. Pan, and G. Herdrich, Design and demonstration of micro-scale vacuum cathode arc thruster with inductive energy storage circuit. Acta Astronautica, 2020. 172: p. 33-46.
    17. Polk, J.E., M.J. Sekerak, J.K. Ziemer, J. Schein, Q. Niansheng, and A. Anders, A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance. IEEE Transactions on Plasma Science, 2008. 36(5): p. 2167-2179.
    18. Anders, A., Ion charge state distributions of vacuum arc plasmas: The origin of species. Physical Review E, 1997. 55(1): p. 969-981.
    19. Anders, A., G. Yushkov, E. Oks, A. Nikolaev, and I. Brown, Ion charge state distributions of pulsed vacuum arc plasmas in strong magnetic fields. Review of scientific instruments, 1998. 69(3): p. 1332-1335.
    20. Cohen, Y., R. Boxman, and S. Goldsmith, Angular distribution of ion current emerging from an aperture anode in a vacuum arc. IEEE Transactions on Plasma Science, 1989. 17(5): p. 713-716.
    21. Kutzner, J. and H.C. Miller, Ion flux from the cathode region of a vacuum arc. IEEE Transactions on Plasma Science, 1989. 17(5): p. 688-694.
    22. Schein, J., N. Qi, R. Binder, M. Krishnan, J.K. Ziemer, J.E. Polk, and A. Anders, Inductive energy storage driven vacuum arc thruster. Review of Scientific Instruments, 2002. 73(2): p. 925-927.
    23. McLyman, C.W.T., Transformer and inductor design handbook. 2004: CRC press.
    24. Rashid, M.H., Power electronics handbook. 2017: Butterworth-heinemann.
    25. Cantero, E.D., A. Sosa, W. Andreazza, E. Bravin, D. Lanaia, D. Voulot, and C.P. Welsch, Design of a compact Faraday cup for low energy, low intensity ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016. 807: p. 86-93.
    26. Huo, W., J. Hu, L. Qin, X. Cao, and W. Zhao, Variable beam entrance Faraday cup system for pulsed electron beam current profile characterization. Rev Sci Instrum, 2020. 91(11): p. 113303.
    27. Hu, J. and J.L. Rovey, Faraday cup with nanosecond response and adjustable impedance for fast electron beam characterization. Rev Sci Instrum, 2011. 82(7): p. 073504.
    28. Damideh, V., J. Ali, S.H. Saw, R.S. Rawat, P. Lee, K.T. Chaudhary, Z.H. Rizvi, S. Dabagh, F.D. Ismail, and L. Sing, Fast Faraday cup for fast ion beam TOF measurements in deuterium filled plasma focus device and correlation with Lee model. Physics of Plasmas, 2017. 24(6): p. 063302.
    29. Mohanty, S.R., H. Bhuyan, N.K. Neog, R.K. Rout, and E. Hotta, Development of Multi Faraday Cup Assembly for Ion Beam Measurements from a Low Energy Plasma Focus Device. Japanese Journal of Applied Physics, 2005. 44(7R).
    30. Bugaev, A.S., E.M. Oks, G.Y. Yushkov, A. Anders, and I.G. Brown, Enhanced ion charge states in vacuum arc plasmas using a "current spike" method. Review of Scientific Instruments, 2000. 71(2): p. 701-703.
    31. Yushkov, G.Y., A. Anders, E.M. Oks, and I.G. Brown, Ion velocities in vacuum arc plasmas. Journal of Applied Physics, 2000. 88(10): p. 5618-5622.
    32. Pécseli, H.L., An equivalent circuit for Landau damping. Journal of Applied Physics, 1976. 47(6): p. 2415-2417.
    33. Qin, S., Z. Jin, and C. Chan, An equivalent circuit and its effective impedance of a plasma load during a high voltage pulse. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996. 114(3-4): p. 288-292.
    34. Kim, M., Development of a deployable vacuum arc thruster system for the post-mission disposal of micro/nano satellites, in International Electric Propulsion Conference. 2019: University of Vienna • Vienna, Austria.
    35. Boxman, R.L., D. Sanders, and P.J. Martin, Handbook of vacuum arc science & technology: fundamentals and applications. 1996: William Andrew.
    36. Lun, J. and C. Law, Influence of Cathode Shape on Vacuum Arc Thruster Performance and Operation. IEEE Transactions on Plasma Science, 2015. 43(1): p. 198-208.
    37. 潘均祐, 真空陰極電弧推進器之研發、設計與測試. 2019.
    38. Kim, M., Development of a deployable vacuum arc thruster system for the post-mission disposal of micro/nano satellites, in International Electric Propulsion Conference. 2019: University of Vienna • Vienna, Austria.
    39. Charbonnier, F.M., C.J. Bennette, and L.W. Swanson, Electrical Breakdown between Metal Electrodes in High Vacuum. I. Theory. Journal of Applied Physics, 1967. 38(2): p. 627-633.
    40. Bellato, M., A. Dainelli, and M. Poggi, Design and tests for the fast Faraday cup of the ALPI post-accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996. 382(1-2): p. 118-120.
    41. Shi, Z., J. Xiao, S. Jia, Z. Liu, and L. Wang, The influence of gap distance on the random walk of cathode spot in vacuum arc. Journal of Physics D: Applied Physics, 2007. 40(19): p. 5924-5928.

    無法下載圖示 校內:2026-02-06公開
    校外:2026-02-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE