簡易檢索 / 詳目顯示

研究生: 莊佳哲
Chuang, Chia-Che
論文名稱: 以化學共沉法合成Ce0.6Zr0.4O2粉末之相分離行為及其氧化還原特性
Phase Separation Behavior and Redox Properties of Ce0.6Zr0.4O2 Powders Prepared by Chemical Coprecipitation Method
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 140
中文關鍵詞: 觸媒轉換器冷啟動相分離儲氧性界面控制pyrochlore
外文關鍵詞: three-way catalysts, cold-start emission, oxygen storage capacity, interface controlled, pyrochlore
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CexZr1-xO2(1 > x > 0,CZ)因具特殊的儲氧性質(oxygen storage capacity,OSC),可添加於汽車觸媒轉換器(three way catalyst,TWC)中提高廢氣轉化率(conversion rate),但其在高溫環境下容易發生相分離(phase separation or decomposition)而導致儲氧性質的劣化,許多研究探討影響CZ儲氧性質的因素包括: 結晶構造(crystal phase)、微結構(texture)及均勻度(homogeniety)等,但對於許多現象的解釋及其形成機制仍未完全瞭解,且結論尚存在不一致性。本研究觀察以化學共沉法合成之Ce0.6Zr0.4O2(C60Z)粉末的相分離行為及探討其相分離機制,並藉由交互通入氧化及還原氣氛以觀察其氧化還原特性,也嘗試添加異價陽離子到C60Z粉末中觀察其抑制相分離的效果。
    以化學共沉法合成之C60Z粉末,是透過製程手法提高了Ce/Zr的混合均勻度,但由於所合成之固溶體為熱力學的介穩相,當加入能量或熱量時便會發生相分離以降低系統的自由能,使系統達到最穩態。本研究發現,C60Z粉末的相分離是發生在升溫過程而非降溫過程,應是屬於熱活化過程(thermal activated process)。觀察C60Z粉末在1000°C持溫不同時間的相分離變化,隨著持溫時間的延長C60Z由原本的c'相逐漸分離成c+t兩相,顯示其組成是隨持溫時間延長而逐漸變化。且在相分離發生的初始階段,C60Z粉末的凝聚指數急遽上升,表示C60Z粉末較容易產生凝聚,在相分離過程中其微結構表現是由晶界所主導(grain boundary dominated)。由C60Z粉末的相分離動力學推論其相分離機制為界面控制(interface controlled),且其相分離的活化能約為398(±20) kJ/mol。由TEM觀察已出現相分離的C60Z粉末,發現Zr會富集在粉末晶粒間的界面上,此現象與粉末的初期燒結(initial sintering)行為相近,並顯示Zr+4在C60Z粉末的相分離過程中扮演著相當重要的角色。且由於Zr+4的離子半徑比Ce+4小,Zr+4的移動(擴散)速率會比Ce+4來得快,其相分離的驅動力來自於粉末間的相互聚集所造成粉末表面與粉末界面間之表面能差異,使得Zr經由擴散傳輸到粉末晶粒間的界面上以降低整體系統的能量,而導致其組成逐漸改變而發生相分離。所以C60Z粉末必須先藉由相互接觸聚集所造成之晶粒表面與晶粒間界面的表面能差異(符合相分離動力學為界面控制機制),才能進一步地促使Zr擴散到晶粒間的界面上而導致相分離。而比較不同Ce/Zr莫耳比的CZ粉末在等溫1000 °C持溫不同時間的相分離過程,發現C77Z發生相分離所需的持溫時間要比C60Z及C26Z來得長許多。從組成成份的觀點來看,C77Z中Ce所占的比例較多,可能使得Zr較不容易移動而導致其相分離速率變慢。
    在還原氣氛下,原來為單一相的C60Z粉末經1200°C煆燒處理後,C60Z不會發生相分離,而是相變為陽離子有序排列的pyrochlore結構。若將已經相分離的C60Z粉末,置於還原氣氛下加熱至1490°C後則會轉變為pyrochlore結構,而後再將其置於空氣環境中經高溫1200°C煆燒處理後,又會由pyrochlore再轉變回原來的相分離狀態,C60Z粉末在還原/氧化反應過程中的有序-無序相變現象應是由於Zr的移動所造成。而當C60Z粉末出現相分離時,其還原溫度及還原比例均往高溫偏移,使得儲氧量明顯地降低。顯示因相分離所導致的成份分佈不均勻(inhomogeneity)會抑制C60Z中氧的釋放能力,造成C60Z的還原特性及儲氧量劣化。
    分別添加Al+3及Ba+2到C60Z粉末中觀察其對C60Z相分離的影響。以化學共沉法添加Al+3至C60Z所合成的ACZ-C粉末,可有效阻止C60Z粉末間的相互接觸所造成的凝聚而抑制其晶粒成長及相分離,且符合C60Z相分離為界面控制機制之推論,並可大幅提升C60Z的儲氧性。而以含浸法添加適量的Ba+2到C60Z粉末中,除了可抑制C60Z的相分離及提高其比表面積之外,Ba+2會先與C60Z中擴散速率較快的Zr+4反應形成BaZrO3的二次相,導致C60Z與BaZrO3的界面間存在著大量的活性氧而提升其儲氧性。

    CexZr1-xO2 (1>x>0, CZ) has unique oxygen storage capacity (OSC) which can be applied in three way catalysts to promote emission conversion efficiency. But, CZ appeared phase separation after high temperature treatment which deteriorated the OSC. The redox properties of CZ are strongly dependent on the crystal phase, texture and homogeneity. However, the explanation and mechanism for the improved redox properties were not fully resolved yet, and the conclusions still existed controversies. The aims of this study were to observe the phase separation behavior and investigate the phase separation mechanism of Ce0.6Zr0.4O2 (C60Z) prepared by chemical coprecipitation method. The redox properties of C60Z were observed under alternate reduction/oxidation atmosphere. Furthermore, the effects for the addition of aliovalent cations to the influence of C60Z phase separation were also investigated.
    The phase separation of C60Z appeared during heating stage which might belong to thermal activated process. We observed the phase separation phenomenon of C60Z calcined at 1000 °C for various durations. The original c'-C60Z gradually separated into c+t phases and the compositions of the two separated phases were gradually changed with the duration time. The A. N. ratios of C60Z increased rapidly in the beginning of phase separation, indicating that C60Z tended to aggregate together. And it also exhibited that the texture behavior of C60Z was grain boundary dominated during phase separation. The phase separation mechanism of C60Z was interface controlled and the activation energy for phase separation was 398(±20) kJ/mol from the kinetic results. We found that Zr enriched at the interface between particles after the appearance of C60Z phase separation from the TEM observation,, which was very similar to the initial stage of sintering and exhibited that Zr+4 played an important role in C60Z phase separation. The diffusion rate of Zr+4 is faster than that of Ce+4 due to the smaller ionic radius of Zr+4 than that of Ce+4. The driving force for phase separation was from the surface energy difference between crystallite surface and interface. Hence, Zr+4 diffused to the interface between particles to lower the surface energy of the system, which resulted in the composition gradually change and led to phase separation. The C60Z powders tended to aggregate in advance to create the surface energy difference between crystallite surface and interface, which induced Zr+4 diffused to the interface between crystallites and appeared C60Z phase separation.
    We observed other different Ce/Zr ratios of CZ (C77Z and C26Z) samples calcined at 1000 °C for various durations. It took longer duration time for the appearance of C77Z phase separation than that for the C60Z and C26Z. There are more Ce contents in C77Z than that in C60Z and C26Z, which resulted in Zr movement difficult and retarded phase separation.
    The single cubic C60Z powders transformed into cation-ordering pyrochlore structure after calcinations at 1200°C for 2h under a reducing atmosphere, and no phase separation appeared. The two separated phases (Ce-rich and Zr-rich phases) obtained after calcinations at 1100°C for 2 h transformed into a pyrochlore structure after heat treatment at 1490°C under a reducing atmosphere , and then this structure transformed into separated phases after further calcination at 1200°C for 2h in air, suggesting that the order-disorder phase transformation under reduction/re-oxidation treatment might be attributed to Zr diffusion. The reduction peak and the reduction fraction were shifted to higher temperatures and the OSC was also deteriorated after the appearance of phase separation for C60Z. The inhomogeneity originating from the phase separation may inhibit the oxygen release in the CZ system.
    The influences of Al+3 or Ba+2 additions to C60Z phase separation were also investigated. The ACZ-C powders synthesized by chemical coprecipitation method could prevent crystallite aggregation and growth, which inhibited C60Z phase separation. The results of ACZ-C were consistent with the interface controlled mechanism of C60Z phase separation. Besides, The OSC properties of ACZ-C were also improved. The addition of an appropriate amount of Ba+2 ions into C60Z by impregnation method was effective in retarding phase separation, and increasing the specific surface area of C60Z. Ba+2 would react with Zr of C60Z to form BaZrO3 which provided active oxygen species between the interfaces of C60Z and BaZrO3, and also promoted OSC.

    摘 要 I Abstract III 誌 謝 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 2 第二章 理論基礎及文獻回顧 5 2-1 CZ系列相的分類及相圖 5 2-2 CZ系列的相分離或相變 14 2-2-1 CZ相分離 14 2-2-2 CZ相變 17 2-3 CZ系列的氧化還原特性(redox property) 27 2-3-1 CZ在還原氣氛下的還原反應 27 2-3-2 CZ在惰性或真空環境下的還原反應 29 2-3-3 CZ的有序-無序相轉變 30 2-3-4 經氧化還原循環後之CZ結構 31 2-3-5 CZ的儲氧能力 31 2-4 添加異價離子對CZ的影響 40 2-4-1 添加Al+3對CZ的影響 41 2-4-2 添加Sr+2對CZ的影響 42 第三章 實驗步驟及分析方法 45 3-1 起始原料及使用藥品 45 3-2 樣品製備 45 3-2-1 CZ系列粉末製備 45 3-2-2 等溫煆燒處理樣品製備 45 3-2-3 ACZ系列粉末製備 46 3-2-4 BCZ系列粉末製備 46 3-3 特性分析 51 3-3-1 相鑑定及晶格常數計算 51 3-3-2 拉曼光譜分析 51 3-3-3 粉末殘留應變計算 51 3-3-4 BET比表面積及介孔洞量測 52 3-3-5 穿透式電子顯微鏡觀察 52 3-3-6 粉末粒徑分析 52 3-3-7 還原特性分析 54 3-3-8 儲氧量量測 54 3-3-9 XPS分析 54 第四章 C60Z的相分離 55 4-1 前言 55 4-2 C60Z粉末的相鑑定 55 4-2-1 XRD分析 55 4-2-2 Raman光譜 56 4-2-3 XRD晶粒粒徑 56 4-2-4 C60Z的應變值 56 4-3 C60Z經等溫不同時間的煆燒處理 60 4-3-1 C60Z低溫煆燒粉末於1000°C持溫不同時間的XRD圖譜 60 4-3-2 C60Z低溫煆燒粉末分別於1100°C與1200°C持溫96小時之XRD比較 60 4-3-3 C60Z的相分離動力學 61 4-4 C60Z粉末的TEM觀察 65 4-5 結果討論 65 4-6 結論 66 第五章 C26Z及C77Z粉末的相分離現象 72 5-1 前言 72 5-2 C26Z及C77Z低溫煆燒粉末經1000°C持溫不同時間之XRD圖譜 72 5-3 C60Z、C26Z及C77Z低溫煆燒粉末經等溫1000°C煆燒處理之晶粒成長及比表面積變化 73 5-4 結論 74 第六章 C60Z的氧化還原特性 80 6-1前言 80 6-2 C60Z粉末在不同氣氛下作煆燒處理 80 6-2-1 XRD圖譜 80 6-2-2 C60Z粉末在空氣或5%CO/N2氣氛下的熱失重曲線 80 6-3 不同煆燒溫度的C60Z粉末之還原特性 81 6-3-1在5%CO/N2氣氛下的TGA/DTGA曲線 81 6-3-2 C60Z粉末之儲氧特性 82 6-4 C60Z粉末在氧化還原氣氛下的相轉變過程 83 6-5 結論 84 第七章 異價陽離子對C60Z相分離之影響 93 7-1 前言 93 7-2 添加Al+3到C60Z粉末 93 7-2-1 XRD圖譜 93 7-2-2 Raman光譜 94 7-2-3 粉末之BET比表面積值及介孔洞(meso pore)分析 95 7-2-4 儲氧性質 96 7-2-5 結果討論 96 7-3 添加Ba+2到C60Z粉末 105 7-3-1 C60Z及BCZ煆燒粉末的相鑑定 105 7-3-2 BET比表面積 107 7-3-3 CZ晶粒粒徑 107 7-3-4 XPS分析 108 7-3-5 儲氧性質 108 7-3-6 結果討論 108 7-4 結論 109 第八章 總結論及未來展望 122 8-1 總結論 122 8-2 未來展望 124 參考文獻 125 附錄 A 134 附錄 B 136 附錄 C 140

    1U. Lassi, Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for Euro IV Emission Limits, Ph.D Dissertation, Department of Process and Environmental Engineering, University of Oulu, 2003.
    2A. Trovarelli, "Catalysis by Ceria and Related Materials," in Catalytic Science Series, Vol.2, Edited by G. J. Huntchings, Imperial College Press, 2002.
    3K. Kenevey, F. Valdivieso, M. Soustelle and M. Pijolat, "Thermal Stability of Pd or Pt Loaded Ce0.68Zr0.32O2 and Ce0.50Zr0.50O2 Catalyst Materials under Oxidising Conditions," Appl. Catal. B Environ., 29 [2] 93-101 (2001).
    4R. G. Wang, P. A. Crozier, R. Sharma and J. B. Adams, "Nanoscale Heterogeneity in Ceria Zirconia with Low-Temperature Redox Properties," J. Phys. Chem. B, 110 [37] 18278-85 (2006).
    5E. Mamontov, T. Egami, R. Brezny, M. Koranne and S. Tyagi, "Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia," J. Phys. Chem. B, 104 [47] 11110-16 (2000).
    6G. Colon, M. Pijolat, F. Valdivieso, H. Vidal, J. Kaspar, E. Finocchio, M. Daturi, C. Binet, J. C. Lavalley, R. T. Baker and S. Bernal, "Surface and Structural Characterization of CexZr1-xO2 CEZIRENCAT Mixed Oxides as Potential Three-Way Catalyst Promoters," J. Chem. Soc., Faraday Trans., 94 [24] 3717-26 (1998).
    7A. Trovarelli, F. Zamar, J. Llorca, C. d. Leitenburg, G. Dolcetti and J. T. Kiss, "Nanophase Fluorite-Structured CeO2-ZrO2 Catalysts Prepared by High-Energy Mechanical Milling," J. Catal., 169 490-502 (1997).
    8G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, M. S. Islam and J. D. Gale, "Computer Simulation Studies of Bulk Reduction and Oxygen Migration in CeO2-ZrO2 Solid Solutions," J. Phys. Chem. B, 101 [10] 1750-53 (1997).
    9R. Di Monte and J. Kaspar, "Nanostructured CeO2-ZrO2 Mixed Oxides," J. Mater. Chem., 15 [6] 633-48 (2005).
    10M. Yoshimura, "Phase Stability of Zirconia," Ceram. Bull., 67 [12] 1950-55 (1988).
    11R. Burch, "Knowledge and Know-How in Emission Control for Mobile Applications," Catal. Rev., 46 [3-4] 271-334 (2004).
    12P. Fornasiero, G. Balducci, R. Di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero and M. Graziani, "Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2," J. Catal., 164 [1] 173-83 (1996).
    13F. Zhang, C. H. Chen, J. M. Raitano, J. C. Hanson, W. A. Caliebe, S. Khalid and S. W. Chan, "Phase Stability in Ceria-Zirconia Binary Oxide Nanoparticles: The Effect of the Ce3+ Concentration and the Redox Environment," J. Appl. Phys., 99 [8] 084313 (2006).
    14Y. Nagai, T. Nonaka, A. Suda and M. Sugiura, "Structure Analysis of CeO2-ZrO2 Mixed Oxides as Oxygen Storage Promoters in Automotive Catalysts," R&D Rev. Toyota CRDL, 37 [4] 20-27 (2002).
    15R. Di Monte and J. Kaspar, "Heterogeneous Environmental Catalysis - a Gentle Art: CeO2-ZrO2 Mixed Oxides as a Case History," Catal. Today, 100 [1-2] 27-35 (2005).
    16A. Suda, Y. Ukyo, H. Sobukawa and M. Sugiura, "Improvement of Oxygen Storage Capacity of CeO2-ZrO2 Solid Solution by Heat Treatment in Reducing Atmosphere," J. Ceram. Soc. Japan., 110 [2] 126-30 (2002).
    17M. Yashima, K. Morimoto, N. Ishizawa and M. Yoshimura, "Zirconia-Ceria Solid Solution Synthesis and the Temperature-Time-Transformation Diagram for the 1:1 Composition," J. Am. Ceram. Soc., 76 [7] 1745-50 (1993).
    18R. C. Garvie, "The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect," J. Phys. Chem., 69 [4] 1238-43 (1965).
    19A. Varez, E. Garcia-Gonzalez and J. Sanz, "Cation Miscibility in CeO2-ZrO2 Oxides with Fluorite Structure. A Combined TEM, SAED and XRD Rietveld Analysis," J. Mater. Chem., 16 [43] 4249-56 (2006).
    20A. Varez, E. Garcia-Gonzalez, J. Jolly and J. Sanz, "Structural Characterization of Ce1-xZrxO2 (0 ≤ x ≤ 1) Samples Prepared at 1650 °C by Solid State Reaction: A Combined TEM and XRD Study," J. Eur. Ceram. Soc. , 27 [13-15] 3677-82 (2007).
    21T.-S. Sheu, T.-Y. Tien and I. W. Chen, "Cubic-to-Tetragonal (t') Transformation in Zirconia-Containing Systems," J. Am. Ceram. Soc., 75 [5] 1108-16 (1992).
    22A. H. Heuer, N. Claussen, W. M. Kriven and M. Ruhle, "Stability of Tetragonal ZrO2 Particles in Ceramic Matrices," J. Am. Ceram. Soc., 65 [12] 642-50 (1982).
    23P. Duwez and F. Odell, "Phase Relationships in the System Zirconia-Ceria," J. Am. Ceram. Soc., 33 [9] 274-83 (1950).
    24E. Tani, M. Yoshimura and S. Somiya, "Revised Phase Diagram of the System ZrO2-CeO2 below 1400°C," J. Am. Ceram. Soc., 66 [7] 506-10 (1983).
    25M. Yoshimura, E. Tani and S. Somiya, "The Confirmation of Phase Equilibria in the System ZrO2-CeO2 below 1400°C," Solid State Ion., 3-4 477-81 (1981).
    26M. Yashima, H. Takashina, M. Kakihana and M. Yoshimura, "Low-Temperature Phase Equilibria by the Flux Method and the Metastable-Stable Phase Diagram in the ZrO2-CeO2 System," J. Am. Ceram. Soc., 77 [7] 1869-74 (1994).
    27M. Yashima, H. Arashi, M. Kakihana and M. Yoshimura, "Raman Scattering Study of Cubic-Tetragonal Phase Transition in Zr1-xCexO2 Solid Solution," J. Am. Ceram. Soc., 77 [4] 1067-71 (1994).
    28M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihana and M. Yoshimura, "Structural Changes of ZrO2-CeO2 Solid Solutions around the Monoclinic-Tetragonal Phase Boundary," Phys. Rev. B, 51 [13] 8018-25 (1995).
    29M. Yashima, S. Sasaki, Y. Yamaguchi, M. Kakihana, M. Yoshimura and T. Mori, "Internal Distortion in ZrO2-CeO2 Solid Solutions: Neutron and High-Resolution Synchrotron X-ray Diffraction Study," Appl. Phys. Lett., 72 [2] 182-84 (1998).
    30F. Zhang, C.-H. Chen, J. C. Hanson, R. D. Robinson, I. P. Herman and S.-W. Chan, "Phases in Ceria-Zirconia Binary Oxide (1-x)CeO2-xZrO2 Nanoparticles: The Effect of Particle Size," J. Am. Ceram. Soc., 89 [3] 1028-36 (2006).
    31B. M. Reddy and A. Khan, "Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Mixed Oxides: Influence of Supporting Oxide on Thermal Stability and Oxygen Storage Properties of Ceria," Catal. Surv. Asia, 9 [3] 155-71 (2005).
    32M. Yashima, K. Morimoto, N. Ishizawa and M. Yoshimura, "Diffusionless Tetragonal-Cubic Transformation Temperature in Zirconia-Ceria Solid Solutions," J. Am. Ceram. Soc., 76 [11] 2865-68 (1993).
    33E. Mamontov, R. Brezny, M. Koranne and T. Egami, "Nanoscale Heterogeneities and Oxygen Storage Capacity of Ce0.5Zr0.5O2," J. Phys. Chem. B, 107 [47] 13007-14 (2003).
    34J. F. Banfield and A. Navrotsky, Reviews in Mineralogy & Geochemistry, Vol. 44: Nanoparticles and the Environment, Mineralogical Society of America and Geochemical Society, Washington DC, 2001.
    35C. G. Levi, "Metastability and Microstructure Evolution in the Synthesis of Inorganics from Precursors," Acta Mater., 46 [3] 787-800 (1998).
    36H. Suto, T. Sakuma and N. Yoshikawa, "DIscussion on the Phase Diagram of Y2O3-Partially Stabilized Zirconia and Interpretation of the Structures," Trans. Japan Inst. Metals., 28 [8] 623-30 (1987).
    37T. Sakuma, Y.-I. Yoshizawa and H. Suto, "The Metastable Two-Phase Region in the Zirconia-Rich Part of the ZrO2-Y2O3 System," J. Mater. Sci., 21 1436-40 (1986).
    38D. Steele and B. E. F. Fender, "Structure of Cubic ZrO2-YO1.5 Solid-Solutions by Neutron-Scattering," J. Phys. C: Solid State Phys., 7 [1] 1-11 (1974).
    39N. Yoshikawa and H. Suto, "Phase Diagram and Microstructures of Yttria Partially Stabilized Zirconia," J. Japan Inst. Metals, 50 [12] 1101-08 (1986).
    40D. N. Fan and L. Q. Chen, "Possibility of Spinodal Decomposition in ZrO2-Y2O3 Alloys: A Theoretical Investigation," J. Am. Ceram. Soc., 78 [6] 1680-86 (1995).
    41N. Shibata, J. Katamura, A. Kuwabara, Y. Ikuhara and T. Sakuma, "The Instability and Resulting Phase Transition of Cubic Zirconia," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 312 [1-2] 90-98 (2001).
    42Y. Zhou, T.-C. Lei and T. Sakuma, "Diffusionless Cubic-to-Tetragonal Phase Transition and Microstructural Evolution in Sintered Zirconia-Yttria Ceramics," J. Am. Ceram. Soc., 74 [3] 633-40 (1991).
    43T. Sakuma, "Development of Domain Structure Associated with the Diffusionless Cubic-to-Tetragonal Transition in ZrO2-Y2O3 Alloys," J. Mater. Sci., 22 [12] 4470-75 (1987).
    44V. Lanteri, R. Chaim and A. H. Heuer, "On the Microstructures Resulting from the Diffusionless Cubic→Tetragonal Transformation in ZrO2-Y2O3 Alloys," J. Am. Ceram. Soc., 69 [10] C-258-C-61 (1986).
    45S. Ii, H. Yoshida, K. Matsui, N. Ohmichi and Y. Ikuhara, "Microstructure and Surface Segregation of 3 mol% Y2O3-Doped ZrO2 Particles," J. Am. Ceram. Soc., 89 [9] 2952-55 (2006).
    46K. Matsui, H. Horikoshi, N. Ohmichi, M. Ohgai, H. Yoshida and Y. Ikuhara, "Cubic-Formation and Grain-Growth Mechanisms in Tetragonal Zirconia Polycrystal," J. Am. Ceram. Soc., 86 [8] 1401-08 (2003).
    47K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida and Y. Ikuhara, "Grain Boundary Segregation-Induced Phase Transformation in Yttria-Stabilized Tetragonal Zirconia Polycrystal," J. Ceram. Soc. Japan., 114 [3] 230-37 (2006).
    48D. K. Smith and H. W. Newkirk, "The Crystal Structure of Bladdeleyite (Monoclinic ZrO2) and its Relation to the Polymorphism of ZrO2," Acta Crystallogr., 18 983-91 (1965).
    49D. A. Porter and K. E. Eastering, Phase Tansformations in Metals and Alloys, 2nd ed., Ch. 2, Taylor & Francis Group, 1992.
    50Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, "Local Structure Analyses of Ce0.5Zr0.5O2 Mixed Oxides by XAFS," J. Synchrot. Radiat., 8 616-18 (2001).
    51Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda and M. Sugiura, "X-ray Absorption Fine Structure Analysis of Local Structure of CeO2-ZrO2 Mixed Oxides with the Same Composition Ratio (Ce/Zr=1)," Catal. Today, 74 [3-4] 225-34 (2002).
    52C. Janvier, M. Pijolat, F. Valdivieso and M. Soustelle, "Thermodynamic Description of the Nonstoichiometric Defect Structure in Ce1-xZrxO2 Solid Solution Powders," Solid State Ion., 127 [3-4] 207-22 (2000).
    53T. Montini, A. Speghini, L. D. Rogatis, B. Lorenzut, M. Bettinelli, M. Graziani and P. Fornasiero, "Identification of the Structural Phases of CexZr1-xO2 by Eu(III) Luminescence Studies," J. Am. Chem. Soc., 131 [36] 13155-60 (2009).
    54T. Muroi, J.-i. Echigoya and H. Suto, "Structure and Phase Diagram of ZrO2-CeO2 Ceramics," Trans. Japan. Inst. Metal, 29 [8] 634-41 (1988).
    55G. Colon, F. Valdivieso, M. Pijolat, R. T. Baker, J. J. Calvino and S. Bernal, "Textural and Phase Stability of CexZr1-xO2 Mixed Oxides under High Temperature Oxidising Conditions," Catal. Today, 50 [2] 271-84 (1999).
    56C. E. Hori, H. Permana, K. Y. S. Ng, A. Brenner, K. More, K. M. Rahmoeller and D. Belton, "Thermal Stability of Oxygen Storage Properties in a Mixed CeO2-ZrO2 System," Appl. Catal. B Environ., 16 [2] 105-17 (1998).
    57A. Martinez-Arias, M. Fernandez-Garcia, A.-B. Hungria, J. C. Conesa and G. Munuera, "Spectroscopic Characterization of Heterogeneity and Redox Effects in Zirconium-Cerium (1:1) Mixed Oxides Prepared by Microemulsion Methods," J. Phys. Chem. B, 107 [12] 2667-77 (2003).
    58G. Wulfsberg, Inorganic Chemistry, Ch. 5, University Science Books, 2000.
    59R. Grau-Crespo, N. H. de Leeuw, S. Hamad and U. V. Waghmare, "Phase Separation and Surface Segregation in Ceria-Zirconia Solid Solutions," Proc. R. Soc. A-Math. Phys. Eng. Sci., 467 [2131] 1925-38 (2011).
    60M. Yashima, M. Kakihana and M. Yoshimura, "Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application," Solid State Ion., 86-88 1131-49 (1996).
    61M. Yashima, N. Ishizawa and M. Yoshimura, "High-Temperature X-ray Study of the Cubic-Tetragonal Diffusionless Phase Transition in the ZrO2ErO1.5 System: I, Phase Change between Two Forms of a Tetragonal Phase, t'-ZrO2 and t"-ZrO2, in the Compositionally Homogeneous 14 mol% ErO1.5-ZrO2," J. Am. Ceram. Soc., 76 [3] 641-48 (1993).
    62M. Yashima and M. Yoshimura, "Thermodynamical Models for Phase Changes between Tetragonal and Cubic Phases in ZrO2-CeO2 Solid Solution," Japan. J. Appl. Phys., 31 L1614-17 (1992).
    63H. C. Yao and Y. F. Y. Yao, "Ceria in Automotive Exhaust Catalysts," J. Catal., 86 254-65 (1984).
    64R. Di Monte and J. Kaspar, "On the Role of Oxygen Storage in Three-Way Catalysis," Top. Catal., 28 [1-4] 47-57 (2004).
    65P. Fornasiero, R. Di Monte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli and M. Graziani, "Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural Properties " J. Catal., 151 [1] 168-77 (1995).
    66S. Damyanova, B. Pawelec, K. Arishtirova, M. V. M. Huerta and J. L. G. Fierro, "Study of the Surface and Redox Properties of Ceria–Zirconia Oxides," Appl. Catal. A Gen., 337 [1] 86-96 (2008).
    67A. Gupta, U. V. Waghmare and M. S. Hegde, "Correlation of Oxygen Storage Capacity and Structural Distortion in Transition-Metal-, Noble-Metal-, and Rare-Earth-Ion-Substituted CeO2 from First Principles Calculation," Chem. Mater., 22 [18] 5184-98 (2010).
    68Z. Yang, T. K. Woo and K. Hermansson, "Effects of Zr Doping on Stoichiometric and Reduced ceria: A First-Principles Study," J. Chem. Phys., 124 [22] 224704-10 (2006).
    69S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya and T. Fukuda, "Structural Study on Monosize CeO2-x Nano-Particles," Nanostructured Materials, 11 [1] 141-47 (1999).
    70S. Meriani, "Features of the Ceria Zirconia System," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 109 121-30 (1989).
    71L. Meng, L. Liu, X. Zi, H. Dai, Z. Zhao, X. Wang and H. He, "Preparation of Ceria-Zirconia Solid Solution with Enhanced Oxygen Storage Capacity and Redox Performance," Fron. Environ. Sci. Eng. China, 4 [2] 164-71 (2010).
    72S. Ricote, G. Jacobs, M. Milling, Y. Ji, P. M. Patterson and B. H. Davis, "Low Temperature Water-Gas Shift: Characterization and Testing of Binary Mixed Oxides of Ceria and Zirconia Promoted with Pt," Appl. Catal. A Gen., 303 [1] 35-47 (2006).
    73H. Vidal, J. Kaspar, M. Pijolat, G. Colon, S. Bernal, A. Cordon, V. Perrichon and F. Fally, "Redox Behavior of CeO2-ZrO2 Mixed Oxides: I. Influence of Redox Treatments on High Surface Area Catalysts," Appl. Catal. B Environ., 27 [1] 49-63 (2000).
    74H. Vidal, J. Kaspar, M. Pijolat, G. Colon, S. Bernal, A. Cordon, V. Perrichon and F. Fally, "Redox Behavior of CeO2-ZrO2 Mixed Oxides: II. Influence of Redox Treatments on Low Surface Area Catalysts," Appl. Catal. B Environ., 30 [1-2] 75-85 (2001).
    75T. Sasaki, Y. Ukyo, K. Kuroda, S. Arai and H. Saka, "Crystal Structure and Phase Relationships in the Reduced-Reoxidized Ceria-Zirconia Solid Solution," Materials Science Forum, 475-479 1351-54 (2005).
    76T. Sasaki, "Flaming Oxidation of Reduced CeO2-ZrO2 Solid Solution in the Near-Room-Temperature Range," J. Ceram. Soc. Japan, 110 [10] 899-903 (2002).
    77S. Otsuka-Yao-Matsuo, H. Morikawa, N. Izu and K. Okuda, "Oxygen Evolution Properties of CeO2-ZrO2 Powders as Automotive Exhaust Sub-Catalysts and the Phase Diagrams," J. Japan Inst. Metals, 59 [12] 1237-46 (1995).
    78S. Otsuka-Yao-Matsuo, T. Omata, N. Izu and H. Kishimoto, "Oxygen Release Behavior of CeZrO4 Powders and Appearance of New Compounds κ and t*," J. Solid State Chem., 138 [1] 47-54 (1998).
    79T. Omata, H. Kishimoto, S. Otsuka-Yao-Matsuo, N. Ohtori and N. Umesaki, "Vibrational Spectroscopic and X-ray Diffraction Studies of Cerium Zirconium Oxides with Ce/Zr Composition ratio=1 Prepared by Reduction and Successive Oxidation of t'-(Ce0.5Zr0.5)O2 Phase," J. Solid State Chem., 147 [2] 573-83 (1999).
    80N. Izu, T. Omata and S. Otsuka-Yao-Matsuo, "Oxygen Release Behaviour of Ce(1-x)ZrxO2 Powders and Appearance of Ce(8-4y)Zr4yO(14-δ) Solid Solution in the ZrO2-CeO2-CeO1.5 System," J. Alloys Compd., 270 [1-2] 107-14 (1998).
    81N. Izu, H. Kishimoto, T. Omata, K. Ono and S. Otsuka-Yao-Matsuo, "Oxygen Release Behavior of Metastable Tetragonal t'meta-(Ce0.5Zr0.5)O2 Phases Prepared by Reduction and Successive Oxidation of t' Phase," Sci. Technol. Adv. Mater., 2 397-404 (2001).
    82H. Otobe, A. Nakamura, T. Yamashita and K. Minato, "Oxygen Potential and Defect Structure of Oxygen-Excess Pyrochlore Ce2Zr2O7+x," J. Phys. Chem. Solids, 66 [2-4] 329-34 (2005).
    83C. Descorme, Y. Madier and D. Duprez, "Infrared Study of Oxygen Adsorption and Activation on Cerium-Zirconium Mixed Oxides," J. Catal., 196 [1] 167-73 (2000).
    84Y. Madier, C. Descorme, A. M. Le Govic and D. Duprez, "Oxygen Mobility in CeO2 and CexZr(1-x)O2 Compounds: Study by CO Transient Oxidation and 18O/16O Isotopic Exchange," J. Phys. Chem. B, 103 [50] 10999-1006 (1999).
    85A. S. Ivanova, "Physicochemical and Catalytic Properties of Systems Based on CeO2," Kinet. Catal., 50 [6] 797-815 (2009).
    86T. H. Vanderspurt, F. Wijzen, X. Tang and M. P. Leffler, "Ceria-Based Mixed-Metal Oxide Structure, Including Method of Making and Use." U. S. Patent 0816805A1, 2003.
    87T. Bog, L. Mussmann, M. Votsmeier, M. Feger, E. Lox, T. Kreuzer, M. Muhammed and O. Adamopoulos, "Oxygen Storage Material, Process for Its Preparation and Its Apllication in a Catalyst." U. S. Patent 0186016A1, 2004.
    88M. Uenishi, I. Tan and H. Tanaka, "Exhaust Gas Purifying Catalyst," U. S. Patent 7081430B2, 2006.
    89T. Kolli, U. Lassi, K. Rahkamaa-Tolonen, T. J. J. Kinnunen and R. L. Keiski, "The Effect of Barium on the Catalytic Behaviour of Fresh and Aged Pd-Ba-OSC/Al2O3 Catalysts," Appl. Catal. A Gen., 298 65-72 (2006).
    90E. C. Corbos, X. Courtois, N. Bion, P. Marecot and D. Duprez, "Impact of the Support Oxide and Ba Loading on the Sulfur Resistance and Regeneration of Pt/Ba/Support Catalysts," Appl. Catal. B Environ., 80 [1-2] 62-71 (2008).
    91L. Cao, C. J. Ni, Z. S. Yuan and S. D. Wang, "Autothermal Reforming of Methane over CeO2-ZrO2-La2O3 Supported Rh Catalyst," Catal. Lett., 131 [3-4] 474-79 (2009).
    92A. Morikawa, T. Suzuki, T. Kanazawa, K. Kikuta, A. Suda and H. Shinjo, "A New Concept in High Performance Ceria-Zirconia Oxygen Storage Capacity Material with Al2O3 as a Diffusion Barrier," Appl. Catal. B Environ., 78 [3-4] 210-21 (2008).
    93J. Fan, D. Weng, X. Wu, X. Wu and R. Ran, "Modification of CeO2-ZrO2 Mixed Oxides by Coprecipitated/Impregnated Sr: Effect on the Microstructure and Oxygen Storage Capacity," J. Catal., 258 [1] 177-86 (2008).
    94R. Di Monte, P. Fornasiero, S. Desinan, J. Kaspar, J. M. Gatica, J. J. Calvino and E. Fonda, "Thermal Stabilization of CexZr1-xO2 Oxygen Storage Promoters by Addition of Al2O3: Effect of Thermal Aging on Textural, Structural, and Morphological Properties," Chem. Mater., 16 [22] 4273-85 (2004).
    95I. Atribak, A. Bueno-Lopez and A. Garcia-Garcia, "Role of Yttrium Loading in the Physico-Chemical Properties and Soot Combustion Activity of Ceria and Ceria-Zirconia Catalysts," J. Mol. Catal. A Chem., 300 [1-2] 103-10 (2009).
    96T. Yamashita, S. Takeshima and T. Tanaka, "NOx Absorbent and Absorption Reduction-type NOx Purifying Catalyst," U. S. Patent 7081431B2, 2006.
    97K. Suga and M. Nakamura, "Catalyst System for Purifying Oxygen Rich Exhaust Gas," U. S. Patent 6395675B1, 2002.
    98H. Inaba and H. Tagawa, "Ceria-Based Solid Electrolytes," Solid State Ion., 83 [1-2] 1-16 (1996).
    99J. Kaspar and P. Fornasiero, "Nanostructured Materials for Advanced Automotive De-Pollution Catalysts," J. Solid State Chem., 171 [1-2] 19-29 (2003).
    100Z. Wei, H. Li, X. Zhang, S. Yan, Z. Lv, Y. Chen and M. Gong, "Preparation and Property Investigation of CeO2-ZrO2-Al2O3 Oxygen-Storage Compounds," J. Alloys Compd., 455 [1-2] 322-26 (2008).
    101T. Suzuki, A. Morikawa, A. Suda, H. Sobukawa, M. Sugiura, T. Kanazawa, J. Suzuki and T. Takada, "Alumina-Cera-Zirconia Composite Oxide for Three-Way Catalyst," R&D Rev. Toyota CRDL 37 [4] 28-33 (2002).
    102H. Sobukawa, "Development of Ceria Zirconia Solid Solutions and Future Trends," R&D Rev. Toyota CRDL, 37 [4] 1-5 (2002).
    103M. H. Yao, R. J. Baird, F. W. Kunz and T. E. Hoost, "An XRD and TEM Investigation of the Structure of Alumina-Supported Ceria-Zirconia," J. Catal., 166 [1] 67-74 (1997).
    104T. Wang, X. Fang, W. Dong, R. Tao, Z. Deng, D. Li, Y. Zhao, G. Meng, S. Zhou and X. Zhu, "Mechanochemical Effects on Microstructure and Transport Properties of Nanocrystalline La0.8Na0.2MnO3 Ceramics," J. Alloys Compd., 458 248-52 (2008).
    105B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd edition, Ch. 14, Pearson Education International, 2001.
    106M. Ozawa, K. Matuda and S. Suzuki, "Microstructure and Oxygen Release Properties of Catalytic Alumina-Supported CeO2-ZrO2 Powders," J. Alloys Compd., 303-304 56-59 (2000).
    107J. E. Spanier, R. D. Robinson, F. Zhang, S.-W. Chan and I. P. Herman, "Size-Dependent Properties of CeO2-y Nanoparticles as Studied by Raman Scattering," Phys. Rev. B, 64 [24] 245407 (2001).
    108K. Matsui, H. Suzuki, M. Ohgai and H. Arashi, "Size Effect in Raman-Spectra of Hydrous Zirconia Particles," J. Ceram. Soc. Japan., 98 [12] 1302-06 (1990).
    109A. Putnis, Introduction to mineral sciences, Ch. 10, Cambridge University Press, New York, 1992.
    110H.-C. Kao and W.-C. Wei, "Kinetics and Microstructural Evolution of Heterogeneous Transformation of θ-Alumina to α-Alumina," J. Am. Ceram. Soc., 83 [2] 362-68 (2000).
    111W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Ch. 10, Wiley, New York, 1991.
    112D. J. Cherniak, X. Y. Zhang, N. K. Wayne and E. B. Watson, "Sr, Y, and REE Diffusion in Fluorite," Chem. Geol., 181 99-111 (2001).
    113R. L. Penn, "Kinetics of Oriented Aggregation," J. Phys. Chem. B, 108, 12707-12 (2004).
    114R. L. Penn and J. F. Banfield, "Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals," Science, 281 [5379] 969-71 (1998).
    115R. L. Penn and J. F. Banfield, "Oriented Attachment and Growth, Twinning, Polytypism, and Formation of Metastable Phases: Insights from Nanocrystalline TiO2," Am. Miner., 83 [9-10] 1077-82 (1998).
    116溫惠玲,由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,2000。
    117C.-H. Wang, X.-P. Jing, L. Wang and J. Lu, "XRD and Raman Studies on the Ordering/Disordering of Ba(Mg1/3Ta2/3)O3," J. Am. Ceram. Soc., 92 [7] 1547-51 (2009).
    118J. R. McBride, K. C. Hass, B. D. Poindexter and W. H. Weber, "Raman and X-ray Studies of Ce1-xRExO2-y, Where RE=La, Pr, Nd, Eu, Gd, and Tb," J. Appl. Phys., 76 [4] 2435-41 (1994).
    119I. Charrier-Cougoulic, T. Pagnier and G. Lucazeau, "Raman Spectroscopy of Perovskite-Type BaCexZr1-xO3(0 ≤ x ≤ 1)," J. Solid State Chem., 142 [1] 220-27 (1999).
    120A. Morikawa, K. Kikuta, A. Suda and H. Shinjo, "Enhancement of Oxygen Storage Capacity by Reductive Treatment of Al2O3 and CeO2–ZrO2 Solid Solution Nanocomposite," Appl. Catal. B Environ., 88 [3-4] 542-49 (2009).

    下載圖示 校內:2017-10-29公開
    校外:2017-10-29公開
    QR CODE