簡易檢索 / 詳目顯示

研究生: 蘇家瑩
Su, Chia-Ying
論文名稱: 黃銅礦二硫化銅銦(CuInS2)與硫化銅錫鋅(Cu2ZnSnS4)太陽能電池吸收層之製程研究
On the process of chalcopyrite CuInS2 and Cu2ZnSnS4 solar absorber layers
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 149
中文關鍵詞: 銅銦氧化物二硫化銅銦硫化銅錫鋅硫化太陽能電池
外文關鍵詞: Cu-In oxides, CuInS2, Cu2ZnSnS4, sulfurization, solar cell
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於黃銅礦結構吸收層之開發,包含了二硫化銅銦
    (CuInS2)與硫化銅錫鋅(Cu2ZnSnS4) 之太陽能吸收層薄膜成長與特性分析,並使用非真空製程開發其吸收層製程,包含塗佈及電鍍製程。成長黃銅礦結構吸收層薄膜有多種製備方式,最常見的為兩階段製程(two-step
    process),第一步先製備含銅銦/銅錫鋅薄膜前驅物,接著於第二步再將試片移至反應爐管以硫粉或硫化氫氣體作為硫源進行硫化反應(ex-situ 硫化)。本研究在使用非真空方式製備銅銦/銅錫鋅薄膜前驅物後,將薄膜置入H2S/Ar 混合氣體通入真空腔體中進行硫化反應,在硫化過程中探討影響前驅物對於硫化過程之影響。
    在 CuInS2 薄膜方面,使用不同銅銦鹽類製備的Cu-In 氧化物,探討
    其形成單一相的Cu2In2O5 及CuInGaO4 之機制。並添加不同比例的Cu2S
    粉末於單一相Cu2In2O5 製成漿料並使用刮刀法成膜,探討其對於CuInS2薄膜之結晶性與薄膜性質之影響。最後於500 torr 10 % 硫化氫 / 90% 氬氣混和氣氛下,銅銦氧化物前驅物於450~550℃之間可硫化而轉變至CuInS2 薄膜。另外在添加Cu2S 改變前驅物Cu/In 比例為1.8 的CuInS2 薄膜,其具有改善二次相如CuIn5S8、CH-CuInS2 之比例以及1.30~1.38 之能隙之薄膜特性。
    在 CZTS 吸收層方面,使用電鍍法製作不同堆疊順序之銅、錫及鋅金
    屬薄膜前驅物,經由10 % 硫化氫/ 90% 氬氣混和氣氛熱處理。探討不同
    堆疊金屬薄膜前驅物對於單一相Cu2ZnSnS4 形成之影響。最後,選擇最
    佳堆疊與具有高純度Cu2ZnSnS4 相之薄膜進行相變化之研究,探討由金
    屬相轉變為Cu2ZnSnS4 相之過程。經由SEM 觀察,375 ℃有150nm 薄膜
    於銅錫鋅金屬層表面生成;經由XRD與Raman 分析,判定其可能為ZnS、
    Cu2SnS3與Cu2ZnSnS4之混合相。最後經由高解析穿透式電子顯微鏡分析,在400 ℃可以發現Cu2ZnSnS4 相於ZnS 以及Cu2S 上生成。

    The objective of this research is the growth and characterization of the Chalcopyrite-like solar absorption layer and the development of sulfurization process. Our studies include CuInS2 and Cu2ZnSnS4 materials. There were
    numbers of methods to grow (for/of growing) CuInS2 thin films. The most common seen method is two-step process in which the precursor is prepared first and then subsequently removed into a reactive furnace for further sulfurization process using sulfur powder or H2S gas as sulfur sources. In our research, the precursors of CIS and CZTS thin film were made via a non-vacuum process. The precursor film was put into a quartz tube under 10% H2S/Ar atmosphere. During the sulfurization process, the main parameters affecting the resulted CuInS2 and Cu2ZnSnS4 thin films were layered structure of precursors, sulfurization temperature and sulfurization pressure.
    In studies of CuInS2, the precipitates were then calcined at different temperatures for different durations. Depending on the type of salt and calcination condition, single phases Cu2In2O5, and CuInGaO4, or the mixture
    of both oxides were obtained. Reaction mechanisms are proposed to explain the formation of the oxides obtained. For the formation of CuInS2 (CIS) coatings, sulfurization of single crystalline Cu2In2O5 nanoparticles (NPs) Cu2In2O5 NPs were synthesized using a chemical route. Thus formed NPs were applied to a Mo-coated glass substrate by a doctor-blading technique. After the doctor-blading, coatings were sulfurized under 560 torr of H2S at various temperatures. Selected doctor-bladed samples were heat treated at 430 °C in air for 30 min for the removal of carbon residual prior to the sulfurization. During the sulfurization, Cu2S (melting point 435 °C) was used
    as the sintering aid. The weight ratio of Cu2S to Cu2In2O5 was varied. The effect of Cu2S on the CIS crystalline structure was explored using Raman analysis. It was found that Cu2S not only improves the sintering but also promotes the formation of desired CIS-chalcopyrite structure and reduces the impurity phase (CuIn5S8 and CH-CuInS2) in the resulting CIS coatings. Finally, at 500 torr 450~550℃, CuInS2 (Cu/In ratio: 1.8) will be formed from oxide precursor, the energy gap is 1.30~1.38.
    In Cu2ZnSnS4, (CZTS) precursor layer was prepared using sequential electrodeposition of individual Cu, Zn, and Sn in different orders. In each stacking order the Cu/(Sn+Zn) ratio was varied. Detailed growth path is therefore reported. We also demonstrate that by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% can
    be obtained. Finally, selected CZTS film with high purity Cu2ZnSnS4 will be studied the phase transformation, and the formation path form metal to Cu2ZnSnS4 phase will be discussed. In SEM analysis, there is 150 nm film growing on the top of Cu-Sn-Zn precursor at 375 ℃. After XRD and Raman analysis, the mixture phase of ZnS, Cu2SnS3 and Cu2ZnSnS4 formed at 375 ℃. Finally, we found Cu2ZnSnS4 formed on the top of ZnS and Cu2S phase at 400 ℃ via TEM analysis.

    Contents Abstract Chinese).............I Abstract (English)............III Acknowledgments...............V Contents ................VI Figure Captions..............IX Table Captions...............XV Chapter 1 Introduction................1 1.1 Varieties and recent developments of solar cells..1 1.2 Chalcopyrite-like compound solar cells......2 Chapter 2 Paper review ...........6 2.1 Structures of chalcopyrite-like solar cell....6 2.2 Manufacture process of Chalcopyrite-like absorber layer.................7 2.2.1 Vacuum process............8 2.2.2 Non-Vacuum process............9 2.3 CuInS2 (CIS) absorber materials........10 2.3.1 Electrical and optical properties......10 2.3.2 Phase diagram and chemical composition.....12 2.3.3 Desired CIS film for solar absorber......13 2.4 Cu2ZnSnS4 (CZTS) absorber materials......13 2.4.1 Electrical and optical properties......13 2.4.2 Phase diagram and chemical composition.....16 2.4.3 Growth path of desired CZTS film.......20 2.5 Motivation and Objective.........25 Chapter 3 Experimental...........27 3.1 CIS materials..............29 3.1.1 Chemical synthesized...........31 3.1.2 Calcination..............31 3.1.3 CIS films .............32 3.1.4 Sulfurization............33 3.2 CZTS materials.............33 3.2.1 Electrolyte for electroplating ......34 3.2.2 Electroplating process.........34 3.2.3 Sulfurization.............35 3.3 Analysis...............35 3.3.1 Crystallization properties.........35 3.3.2 Morphologies of top and cross-section....36 3.3.3 Micro-Morphologies...........36 3.3.4 Optical process............37 3.3.5 electrical properties..........37 Chapter 4 Results and Discussions........38 4.1 CIS absorber layer...........38 4.1.1 Chemical Synthesis of Cu2In2O5 nanoparticles...38 4.1.2 Chemical Synthesis of CuInGaO4.......53 4.1.3 Effects of Cu2S sintering aid on the formation of CuInS2 coatings from single crystal Cu2In2O5 nanoparticles..............59 4.2 CZTS absorber layer............69 4.2.1 Electroplting Cu-Sn-Zn metal layers......69 4.2.2 Annealing results in H2S atmosphere......84 4.2.3CZTS absorption layers with controlled phase purity.................87 4.2.4 Microstructural analysis and phase transformation of CZTS thin films during sulfurization.....102 Chapter 5 Conclusion............123 Reference...............125 Publication list..............147 Conference Attending............148 Other Attending.............149

    Reference
    [1] U.S Energy Inforamtio Administration (EIA), International Energy Outlook2014, September (2014).
    [2] K. Zweibel. Thin film PV manufacturing: Materials costs and their optimization. Solar Energy Materials & Solar Cells 63 375-386 (2000).
    [3] A. Feltrin and A. Freundlich. Material considerations for terawatt level deployment of photovoltaics. Renewable Energy 3 180-185 (2008).
    [4] Website of National Center for Photovoltatics in National Renewable Energy Laboratory (NREL) : http://www.nrel.gov/ncpv/
    [5] S. Wagner, J. L. Shay, P. Migliora, H. M. Kasper. CulnSe2-CdS Heterojunction Photovoltaic Detectors. Appl Phys Lett. 25 434-435 (1974).
    [6] D. Braunger, T. Durr, D. Hariskos, C. Koble, T. Walter, N. Wieser, H. W. Schock . Photovoltaic Specialists Conference. Conference Record of the Twenty Fifth IEEE, 1001 – 1004 (1996).
    [7] L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus, H. W. Schock. ZnO/CdS/CuInSe2 Thin-Film Solar-Cells with Improved Performance. Appl. Phys. Lett. 62 597-599 (1993).
    [8] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19 894-897 (2011).
    [9] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi. Development of CZTS-based thin film solar cells. Thin Solid Films 517 2455-2460 (2009).
    [10] Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, and V. Sundara Raja. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells 93 1230-1237 (2009).
    [11] K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27 2094–2097 (1988).
    [12] Th. M. Friedlmeier, N. Wieser, Th. Walter, H. Dittrich, H.W. Schock, Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in: Proceedings of the 14th European PVSEC and Exhibition, 1997, P4B.10.
    [13] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, in: Technical Digest of the 9th International PVSEC—Miyazaki, Japan 745–746 (1996).
    [14] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. Maw, H. Araki, K. Oishi, H. Katagiri Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515 5997–5999 (2007).
    [15] J. Seol, S. Lee, J. Lee, H. Nam, K. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75 155–162 (2003).
    [16] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66 1978–1981 (2005).
    [17] T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Status Solidi (C) 3 2844–2847 (2006).
    [18] X. Zhang, G. Guo, C. Ji, K. Huang, C. Zha, Y. Wang, L. Shen, A. Gupta and N. Bao, Efficient Thermolysis Route to Monodisperse Cu2ZnSnS4 Nanocrystals with Controlled Shape and Structure. Scientific Reports 5 5086 (2014).
    [19] C. H. Tsia, .Process Assessment of CuInS2 Thin Films. Department of Materials Science and Engineering, National Chung Kung University. PhD dissertation , September (2011).
    [20] K. Otte, L. Makhova, A. Braun, I. Konovalov, Flexible Cu(In,Ga)Se2 thin-film solar cells for space application. Thin Solid Films 511 613-622 (2006).
    [21] J. R. Mannn, N. Vora, I. L. Repins. In Situ thickness measurements of chemical bath-deposited CdS. Solar Energy Materials & Solar Cells 94 333–337 (2010).
    [22] J. Palm, V. Probst, A. Brummer, W. Stetter, R. Tölle, T. P. Niesen, S. Visbeck, O. Hernandez, M. Wendl, H. Vogt, H. Calwer, B. Freienstein, F. Karg. CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors. Thin Solid Films 431–432 514-522 (2003).
    [23] C. H. Tsai, D. K. Mishra, C. Y. Su and J. M. Ting. Effects of sulfurization and Cu/In ratio on the performance of the CuInS2 solar cell. Int. J. Energy Res. 38 418–428 (2014).
    [24] S. Seike, K. Shiosaki, M. Kuramoto, H. Komaki, K. Matsubara, H. Shibata, S. Ishizuka, A. Yamada, S. Niki. Development of high-efficiency CIGS integrated submodules using in-line deposition technology. Sol. Energy Mater. Sol. Cells 95 254-256 (2011).
    [25] L. L. Kazmerski, F. R. White, G. K. Morgan. Thin-Film Culnse2-Cds Heterojunction Solar-Cells. Appl. Phys. Lett. 29 268-270 (1976).
    [26] W. S. Chen, J. M. Stewart, B. J. Stanbery, W. E. Devaney, R. A. Mickelsen. Development of thin film polycrystalline CuIn1-xGaxSe2 solar cells. Paper presented at: Proceedings of the 19th Photovoltaics Specialist Conference1987; New Orleans.
    [27] D. B. Mitzin, O. Gunawan, T. K. Todorov, K. Wang, S. Guha. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials & Solar Cells 95 1421–1436 (2011).
    [28] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi. 19.9%-efficient ZnO/CdS/ CuInGaSe2 Solar Cell with 81.2% Fill Facto. Prog. Photovolt. Res. Appl. 16 235-239 (2008).
    [29] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda. Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-film Solar Cells. Prog. Photovolt. Res. Appl. 11 225-230 (2003).
    [30] H. Yoo, J. H. Kim. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films. Thin Solid Films 518 6567–6572 (2010).
    [31] M. S. Kim, R. B. V. Chalapathy, K. H. Yoon, B. T. Ahn. Grain Growth Enhancement and Ga Distribution of Cu(In0.7Ga0.3)Se2 Film Using Cu2Se Layer on Cu–In–Ga Metal Precursor. J. Electrochem. Soc. 157 B154-B158 (2010).
    [32] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express 1 041201 (2008).
    [33] P. M. P. Salome´, J. Malaquias, P. A. Fernandes, M. S. Ferreira, PLeitao, A. F.da Cunha , J.C Gonza´ lez, F. N. Matinaga, G. M. Ribeiro, E. R. Viana. The influence of hydrogen in the incorporation of Zn during the growth of Cu2ZnSnS4 thin films. Solar Energy Materials & Solar Cells 95 3482–3489 (2011).
    [34] J. Ito and T. Nakazawa. Electrical and optical properties of Stannite-type Quaternary Semiconductor Thin film. Japanese Journal of Applied Physics 27 2094-2097 (1988).
    [35] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey. Thermally evaporated Cu2ZnSnS4 solar cells. APPLIED PHYSICS LETTERS 97, 143508 (2010).
    [36] V. K. Kapur, B. M. Basol, C. R. Leidholm, R. Roe, U. S. Patent No. 6127202, 3 October (2000).
    [37] M. Kaelin, D. Rudmann, A. N. Tiwari. Low cost processing of CIGS thin film solar cells. Sol. Energy. 77 749-756 (2004).
    [38] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics. J. Am. Chem. Soc. 130 16770-16777 (2008).
    [39] K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki. Thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells 93 583-587 (2009).
    [40] Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, and V. Sundara Raja. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells. 93 1230-1237 (2009).
    [41] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. Journal of the American Chemical Society 131 12554-12555 (2009).
    [42] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society 132 17384-17386 (2010).
    [43] E. Lee, S. J. Park, J. W. Cho, J. Gwak, M. K. Oh, and B. K. Min. Nearly carbon-free printable CIGS thin films for solar cell applications. Solar Energy Materials and Solar Cells. 95 2928-2932 (2011).
    [44] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, and A. N. Tiwari. Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 480–481 486-490 (2005).
    [45] S. Ahn, C. Kim, J. H. Yun, J. Gwak, S. Jeong, B.-H. Ryu, and K. Yoon. CuInSe2 (CIS) Thin Film Solar Cells by Direct Coating and Selenization of Solution Precursors. The Journal of Physical Chemistry C 114 8108-8113 (2010).
    [46] K. Moriya, K. Tanaka and H. Uchiki Characterization of Cu2ZnSnS4 Thin Films Prepared by Photo-Chemical Deposition. Japanese Journal of Applied Physics 44 715–717 (2005).
    [47] C. P. Chan, H. Lam, and C. Surya. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells 94 207-211 (2010).
    [48] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H. W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films 517 2511-2514 (2009).
    [49] S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun, J. H. Moon, S. S. Kolekar, and J. H. Kim. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta 55 4057-4061(2010).
    [50] R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, and H. W. Schock. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films 517 2465-2468 (2009).
    [51] Y. Wang, J. Ma, P. Liu, Y. Chen, R. Li, J. Gu, J. Lu, S. E. Yang, and X. Gao. Cu2ZnSnS4 films deposited by a co – electrodeposition - annealing route. Materials Letters 77 13-16 (2012).
    [52] J. Ge, S. Zuo, J. Jiang, J. Ma, L. Yang, P. Yang, and J. Chu. Investigation of Se supply for the growth of Cu2ZnSn(SxSe1−x)4 (x=0;0.02–0.05) thin films for photovoltaics. Applied Surface Science 258 7844-7848 (2012).
    [53] J. J. Scragg, D. M. Berg, and P. J. Dale. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry 646 52-59 (2010).
    [54] H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells 93 996-999 (2009).
    [55] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, Texas, USA (1974).
    [56] S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni. A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell. Adv. Energy Mater. 2 253–259 (2012).
    [57] K. K. Banger, J. A. Hollingsworth, J. D. Harris, J. Cowen, W. E. Buhro, A. F. Hepp. Ternary single-source precursors for polycrystalline thin-film solar cells, Applied Organometallic Chemistry 16 617-627 (2002).
    [58] H. Metzner, M. Brussler, K. D. Husemann, H. J. Lewerenz. Characterization of phases and determination of phase-relations in the Cu-In-S system by gamma-gamma perturbed angular-correlations, Phys Rev B 44 11614-11623 (1991).
    [59] C. Dzionk, M. Brussler, H. Metzner. Development of CuInS2 solar-cell material by PAC-buck phases, thin films, and nuclear-reaction doping, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 63 231-235 (1992).
    [60] B. Barcones, A. Pérez-Rodríguez, L. Calvo-Barrio, A. Romano - Rodríguez, J. R. Morante, E. Rudigier, I. Luck, J. Djordjevic, R. Scheer. Thin Solid Films 480–481 362-366 (2005).
    [61] E. Rudigier, B. Barcones, I. Luck, T. Jawhari-Colin, A. Perez-Rodriguez, R. Scheer. Quasi real-time Raman studies on the growth of Cu–In–S thin films. J. Appl. Phys. 95 5153-5158 (2004).
    [62] J. Álvarez-García, J. Marcos-Ruzafa, A. Pérez-Rodríguez, A. Romano-Rodríguez, J.R. Morante, R. Scheer. MicroRaman scattering from polycrystalline CuInS2 flms: structural analysis. Thin Solid Films 361–362 208-212 (2000).
    [63] K. Taretto, U. Rau, J. H. Werner. Numerical simulation of grain boundary effects in Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films 480–481 8-12 (2005).
    [64] O. Lundberg, M. Bodegård, L. Stolt. Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells. Thin Solid Films 431–432 26-30 (2003).
    [65] I. Visoly-Fisher, S. R. Cohen, A. Ruzin, D. Cahen. How Polycrystalline Devices Can Outperform Single-Crystal Ones: Thin Film CdTe/CdS Solar Cells. Adv. Mater. 16 879-883 (2004).
    [66] M. Casteleyn, M. Burgelman, B. Depuydt, A. Niemegeers, I. Clemminck. Growth studies of CuInSe2 using Cu-Se fluxes. First IEEE WCPEC 1 230-233 (1994).
    [67] D. Thomas, R. Mainz, H. Rodriguez-Alvarez, B. Marsen, D. Abou-Ras, M. Klaus, C. Genzel, H.W. Schock. In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction. Thin Solid Films 519 7193-7196 (2011).
    [68] M. Yeh, C. Lee, and D. Wuu. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition. Journal of Sol-Gel Science and Technology 52 65-68 (2009).
    [69] S. Ji, T. Shi, X. Qiu, J. Zhang, G. Xu, C. Chen, Z. Jiang and C. Ye. A Route to Phase Controllable Cu2ZnSn(S1-xSex)4 Nanocrystals with Tunable Energy Bands. Scientific Reports 3, 2733 (2013).
    [70] F. J. Fan, L. Wu, M. Gong, S. Y. Chen, G. Y. Liu, H. B. Yao, H. W. Liang, Y. X. Wan and S. H. Yu. Linearly arranged polytypic CZTSSe nanocrystals. Scientific Reports 2 952 (2012).
    [71] P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha. CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. Phys. Status Solidi C 7 3–4 901– 904 (2010)
    [72] E. Gu¨neri, F. Go¨de, B. Boyarbay, C. Gu¨mu¨ s. Structural and optical studies of chemically deposited Sn2S3 thin films. Materials Research Bulletin 47 3738–3742 (2012).
    [73] L. L. Cheng, M. H. Liu, M. X. Wang, S. C. Wang, G. D. Wang, Q. Y. Zhou, Z. Q. Chen. Preparation of SnS films using solid sources deposited by the PECVD method with controllable film characters. Journal of Alloys and Compounds 545 122–129 (2012).
    [74] M. Devika, K. T. Ramakrishna Reddy, N. Koteeswara Reddy, K. Ramesh, R. Ganesan. Microstructure dependent physical properties of evaporated tin sulfide films. J. Appl. Phys. 100 023518 (2006).
    [75] J. J. Scragg. Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors. PhD dissertation Department of Chemistry, University of Bath (2010).
    [76] G. Garg, S. Bobev, A. K. Ganguli. Single crystal structure and electrical properties of Cu8Ni4Sn12S32. Journal of Alloys and Compounds 327 113-115 (2001).
    [77] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J. Y. Kim, J. Moon. Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route. Scientific Reports 3 3069 (2013).
    [78] O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, Pérez-Rodríguez. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact to the high power conversion efficiency. Solar Energy Materials & Solar Cells 117 246–250 (2013).
    [79] Q. Guo, H. W. Hillhouse, and R. Agrawal. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. AM. CHEM. SOC. 131 11672–11673 (2009).
    [80] M. G. Sousa, A. F. da Cunha, P.M. P. Salomé b, P. A. Fernandes, J. P. Teixeira, J. P. Leitão. Cu2ZnSnS4 absorber layers obtained through sulphurization of metallic precursors: Graphite box versus sulphur flux. Thin Solid Films 535 27–30 (2013).
    [81] M. G. Sousa, A. F.daCunha, P. A.Fernande, J. P.Teixeira, R. A.Sousa, J. P.Leitão. Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance. Solar Energy Materials & Solar Cells 126 101–106 (2014).
    [82] C. Julien, H. S. Mavi, K. P. Jain and M. Balkanski. Resonant Raman scattering studies of SnS, crystals. Material science and Engineering B 23 98-104 (1994).
    [83] C. Wang, K. Tang, Q. Yang, Y. Qian. Raman scattering, far infrared spectrum and photoluminescence of SnS2 nanocrystallites. Chemical Physics Letters 357 371–375 (2002).
    [84] J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R. E. Tallman, T. M. Ritter, B. A. Weinstein. Raman scattering in β-ZnS. Phys Rev B 69 014301 (2004).
    [85] M. Scocioreanu, M. Baibarac, I. Baltog, I. Pasuk, T. Velula. Photoluminescence and Raman evidence for mechanico-chemical interaction of polyaniline-emeraldine base with ZnS in cubic and hexagonal phase. Journal of Solid State Chemistry 186 217–223 (2012).
    [86] P. A. Fernandes, P. M. P. Salomé, A.F. da Cunhaa. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of Alloys and Compounds 509 7600– 7606 (2011).
    [87] D. M. Berg, M. Arasimowicz, , R. Djemour, L. Gütay, S. Siebentritt, S. Schorr, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodriguez, P. J. Dale. Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy. Thin Solid Films 569 113–123 (2014).
    [88] H. Yoo, J. H. Kim, L. Zhang. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film. Current Applied Physics 12 1052-1057 (2012).
    [89] G. Gordillo, C. Calderóna, P. Bartolo-Pérez. XPS analysis and structural and morphological characterization of Cu2ZnSnS4thin films grown by sequential evaporation. Applied Surface Science 305 506–514 (2014).
    [90] A. Weber, R. Mainz, T. Unold, S. Schorr, and H. W. Schock. In-situ XRD on formation reactionsof Cu2ZnSnS4 thin films. P hys. Status Solidi C 6 1245–1248 (2009).
    [91] M. G. Sousa, A. F. da Cunha, P. A. Fernandes, J. P. Teixeira, R. A. Sousa, J. P. Leitão. Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance. Solar Energy Materials & Solar Cells 126 101–106 (2014).
    [92] W. Li, X. Han, Y. Zhao, L. Liu, J. Wang, S. Yang, T. Tanaka. Cu2ZnSnS4 alloys synthesized from Cu2SnS3@ZnS nanoparticles via a facile hydro thermal approach. Materials Letters 125 167–170 (2014).
    [93] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65 141-148 (2001).
    [94] S. Siebentritt. Why are kesterite solar cells not 20 % efficient ? Thin Solid Films 535 1-4 (2013).
    [95] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey and S. Guha. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt: Res. Appl. 21 72-76 (2011)
    [96] J. Ge, J. Jiang, P. Yang, C. Pena, Z. Huang, S. Zuo, L. Yang, J. Chu. A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/ Mo thin film solar cell. Solar Energy Materials & Solar Cells 125 20–26 (2014).
    [97] P. A. Fernandes, P. M. P. Salomé, A. F. Sartori, J. Malaquias, A. F. da Cunha, Björn-Arvid Schubert, J.C. González , G. M. Ribeiro, Effects of sulphurization time on Cu2ZnSnS4 absorbers and thin films solar cells obtained from metallic precursors. Solar Energy Materials & Solar Cells 115 157–165 (2013).
    [98] S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun, J. H. Moon, S. S. Kolekar, and J. H. Kim, Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta 55 4057-4061 (2010).
    [99] H. Yang, X. Zhang, A. Tang, K. Zhang, G. Qiu. Mechanochemical synthesis of In2O3/CuO nanocomposites. Mater. Chem. Phys.86 330 (2004).
    [100] X. Wang, M. Zhang, J. Liu, T. Luo, Y. Qian. Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sens. Actuators B: Chem. 137 103-110 (2009).
    [101] P. Xu, Z. Cheng, Q. Pan, J. Xu, Q. Xiang, W. Yu, Y. Chu. High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties. Sens. Actuators B: Chem 130 (2008) 802-808.
    [102] W. H. Ho, S. K. Yen. Preparation and characterization of indium oxide film by electrochemical deposition. Thin Solid Films 498 80-84 (2006).
    [103] T. T. Tseng, W. J. Tseng. Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis. Ceram. Int. 35 2837-2844 (2009).
    [104] J. Q. Xu, Y. P. Chen, Q. Y. Pan, Q. Xiang, Z. X. Cheng, X. W. Dong. A new route for preparing corundum-type In2O3 nanorods used as gas-sensing materials. Nanotechnol. 18 115615 (2007).
    [105] J. E. Clayton, D. P. Cann, N. Ashmore. Synthesis and processing of AgInO2 delafossite compounds by cation exchange reactions. Thin Solid Films 411 140-146 (2002).
    [106] T. Wada, T. Negami, M. Nishitani. Preparation of CuInS2 films by sulfurization of Cu‐In‐O films. Appl. Phys. Lett. 62 1943 (1993).
    [107] T. Wilhelm, B. Berenguier, M. Aggour, K. Skorupska, M. Kanis, M. Winkelnkemper, J. Klaer, C. Kelch, H.J. Lewerenz. 8% efficient CuInS2 solar cells by electrochemically removed Cu–S Phases. Thin Solid Films 480–481 24-28 (2005).
    [108] C. H. Tsai, J. M. Ting, R. R. Wang. Ex situ structural characterization during the formation of CuInS2 thin films. Acta Materialia 59 349-354 (2011).
    [109] J. C. T. Hahn, H. Metzner, J. Eberhardt, U. Reislohner, M. Gossla, W. Witthuhn, J. Krausslich. Metastability of CuInS2 and its implications on thin-film growth. Appl. Phys. Lett. 88 171915 (2006).
    [110] N. M. Gasanly, S. A. Elhamid, L. G. Gasanova, A. Z. Magomedov. You have full text access to this contentVibrational Spectra of Spinel—Type Compound CuIn5S8. Phys. Status Solidi B-Basic Res. 169 K115-118 (1992).
    [111] H. Rodriguez-Alvarez, I. M. Koetschaub, C. Genzela, H. W. Schock. Growth paths for the sulfurization of Cu-rich Cu/In thin films. Thin Solid Films 517 2140–2144 (2009).
    [112] H. Okamoto. Cu-In (Copper-Indium). J. Phase Equilib. Diffus. 26 645 (2005).
    [113] G. A. J. Nese Orbey, Robert W. Birkmire, T. W. Fraser Russell, J. Phase Equilib. Diffus. 21 509 (2000).
    [114] C. H. Tsai, J. M. Ting, W. H. Ho. Cold-walled, in-situ sulfurization of Cu–In alloys. Thin Solid Films 517 4731-4734 (2009).
    [115] C. H. Tsai, J. M. Ting, W. H. Ho. Microstructural analysis and phase transformation of CuInS2 thin films during sulfurization. CrystEngComm 13 5447-5454 (2011).
    [116] R. Scheer, K. Diesner, H. J. Lewerenz. Experiments on the microstructure of evaporated CuInS2 thin films. Thin Solid Films 268 130-136 (1995).
    [117] E. Rudigier, C. Pietzker, M. Wimbor, I. Luck, J. Klaer, R. Scheer, B. Barcones, T. Jawhari Colin, J. Alvarez-Garcia, A. Perez-Rodriguez, A. Romano-Rodriguez. Real-time investigations of the influence of sodium on the properties of Cu-poor prepared CuInS2 thin films. Thin Solid Films 431–432 110-115 (2003).
    [118] R. Scheer, R. Klenk, J. Klaer, I. Luck. CuInS2 based thin film photovoltaics. Solar Energy 77 777-784 (2004).
    [119] I. V. Pankove. Optical Processes in Semiconductors. Dover Inc.. New York, p. 34 (1975).
    [120] G. C. Park, H. D. Chung, C. D. Kim, H. R. Park, W. J. Jeong, J. U. Kim, H. B. Gu, K. S. Lee. Photovoltaic characteristics of CuInS2CdS solar cell by electron beam evaporation. Sol. Energy Mater. Sol. Cells 49 365-374 (1997).
    [121] T. Todorov, E. Cordoncillo, J. F. Sánchez-Royo, J. Carda, P. Escribano. CuInS2 Films for Photovoltaic Applications Deposited by a Low-Cost Method. Chem. Mater. 18 3145-3150 (2006).
    [122] R. R. Philip, B. Pradeep. Nonideal anion displacement, band gap variation, and valence band splitting in Cu–In–Se compounds. Thin Solid Films 472 136-143 (2005).
    [123] S. B. Zhang, S. H. Wei, A. Zunger, H. Katayama-Yoshida. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57 9642-9656 (1998).
    [124] N. Hamada, M. Hamada, T. Uesugi, Y. Takigawa and K. Higash. Effect of Small Addition of Zinc on Creep Behavior of Tin. Materials Transactions 51 1747-1752 (2010).
    [125] I. A. Carlos and M. R. H. de Almeida. Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry 562 153-159 (2004).
    [126] C. Domínguez-Ríos, M. V. Moreno, R. Torres-Sánchez, W. Antúnez, A. Aguilar-Elguézabal, J. González-Hernández. Effect of tartrate salt concentration on the morphological characteristics and composition of Cu-Zn electroless plating on zamak 5 zinc alloy. Surface &Coatings Technology. 202 4848-4854 (2008).
    [127] R. Juskenas, V. Karpavičienė, V. Pakštas, A. Selskis, V. Kapočius. Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with D-mannitol. Journal of Electroanalytical Chemistry 602 237-244 (2007).
    [128] ASM Handbook. Alloy phase Diagrams. 3 25-383 (1992).
    [129] K. N. Tu. Cu/Sn interfacial reactions: thin-film case versus bulk case. Materials Chemistry and Physics 46 217-223 (1996).
    [130] I.A. Carlos, C. A. C. Souza, E. M. J. A. Palline, R. H. P. Franciso, V. Cardoso and B. S. Lima-Neto. Effect of tartrate on the morphological characteristics of the copper-tin electrodeposits from a noncyanide acid bath. Journal of Applied Electrochemistry 30 987-994 (2000).
    [131] R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gileiser, K. K. Kelley. Selected Values of the Thermodynamic Properties of Binary Alloy. ASM Metals Park, Ohio (1973).
    [132] M. C. Wang, S. P. Yu, T. C. Chang, M. H. Hon. Formation and morphology of the intermetallic compounds formed at the 91Sn–8.55Zn–0.45Al lead-free solder alloy/Cu interface. Journal of Alloys and Compounds 389 133–139 (2005).
    [133] C.Y. Chou and S.W. Chen. Phase equilibria of the Sn–Zn–Cu ternary system. Acta Materialia 54 2393-2400 (2006).
    [134] S. P. Yu, M. C. Wang and M. H. Hon. Formation of intermetallic compounds at eutectic Sn–Zn–Al solder/Cu interface. J. Mater. Res. 16 76-82 (2001) .
    [135] T. C. Chang, M. H. Hon, and M. C. Wang. Morphology and Phase Transformation at a Solder Joint in a Solid-State Reaction. Electrochemical and Solid-State Letters 7 J4-J8 (2004).
    [136] S. W. Yoon, W. K. Choi, H. M. Lee. Scripta Mater 40 (1999) 327–32.
    [137] D. Q. Yu, T. C. Chai, M. L. Thew, Y. Y. Ong, V. S. Rao, L. C. Wai, J. H. Lau. Electromigration study of 50 µm pitch micro solder bumps using four-point Kelvin structure. Electronic Components and Technology Conference (2009).
    [138] C. N. Liao, C. T. Wei. An isochronal kinetic study of intermetallic compound growth in Sn/Cu thin film couples. Thin Solid Films 515 2781–2785 (2006).
    [139] W. M. Tang, A. Q. He, Q. Liu, D. G. Ivey. Solid state interfacial reactions in electrodeposited Cu/Sn couples. Transactions of Nonferrous Metals Society of China 20 90−96 (2010).
    [140] C. Y. Su, D. K. Mishra, C. Y. Chiu, J. M. Ting. Effects of Cu2S sintering aid on the formation of CuInS2 coatings from single crystal Cu2In2O5 nanoparticles. Surface and Coatings Technology 231 517-520 (2013).
    [141] C. Yan, J. Chen, F. Liu, N. Song, H. Cui, B. K. Ng, J. A. Stride, X. Hao. Kesterite Cu2ZnSnS4 solar cell from sputtered Zn/(Cu & Sn) metal stack precursors. Journal of Alloys and Compounds 610 486–491 (2014).
    [142] P. Jain and P. A. Parameters influencing the optical properties of SnS thin films. Journal of Semiconductors 34 093004 (2013).
    [143] H. C. Choi, Y. M. Jung, S. B. Kim. Size effects in Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37 33-38 (2005).
    [144] K. A. Alim, V. A. Fonoberov, A. A. Balandin Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett 86 053103 (2005).

    無法下載圖示 校內:2020-01-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE