簡易檢索 / 詳目顯示

研究生: 林衡道
Lin, Heng-Dao
論文名稱: 神經壞死病毒非結構蛋白(RGNNV) B1於調節氧化壓力功能之探討
Studies on betanodavirus non-structural protein B1 how to regulate the oxidative stresses in fish cell lines
指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 101
中文關鍵詞: 野田病毒非結構性蛋白B1活性氧分子(ROS)氧化壓力反應抗氧化酵素細胞週期停滯抗細胞凋亡
外文關鍵詞: Betanodavirus, nonstructural protein B1, reactive oxygen species (ROS), oxidative stress respone, anti-oxidant enzyme, cell cycle arrest, anti-apoptosis
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經壞死病毒(Nervous Necrosis Virus, NNV)屬於野田病毒(Betanodavirus)的一種,可感染多種高經濟性魚種如石斑魚。在幼苗期具有高致死率,對水產養殖業造成嚴重的經濟損失。先前研究中RGNNV感染石斑魚細胞株會造成粒線體膜電位消失及細胞壞死,並且病毒感染也伴隨ROS (reactive oxygen species)產生。此外,B1在病毒感染後可以降低病毒蛋白表現量及減緩細胞死亡,但目前B1是否能夠調節ROS及如何延遲細胞死亡,仍然不明。本篇論文發現表現B1能誘發少量O2-的產生,同時微量的氧化壓力會誘發抗氧化酵素Cu/Zn SOD、Mn SOD以及catalase的表現量上升及細胞周期停滯於G1期。另一方面,B1能減少H2O2、H2O2誘導劑tBHQ以及凋亡誘導劑Act D (Actinomycin D) 所產生的細胞凋亡。此外,B1進核與否會減弱抵抗H2O2的能力,所以B1進核或許對B1的功能是一個重要的影響關鍵。最後藉由微矩陣晶片分析表現B1後轉錄體的差異,希望能找出有關ROS以及抵抗細胞死亡的線索。根據實驗結果,得知B1可能是一種具有多種功能的蛋白,除了調節氧化壓力外也會造成細胞周期停滯並抑制細胞凋亡。這些發現可以在未來對野田病毒的感染、致病機制有更深的理解與應用。

    As we known, some fish species are infected by betanodavirus such as grouper, which results in severe mortality and significant economic losses on the aquaculture industry. In previous studies, RGNNV can induce necrotic cell death via mitochondrial membrane (MMP) loss in grouper cells. The RGNNV B1 is belonging to early expression gene which plays a crucial role on anti-apoptotic function and reduces viral replication. But, whether B1 overexpression can regulate ROS is still unknown. And how to reduce cell death with virus infection is also unclear. In this study, we found that the B1 can induce superoxide anion (O2- ) production at 12h. And then the B1 can up-regulate some anti-oxidant enzymes such as Cu/Zn SOD, Mn SOD, catalase and arrest the cell cycle via oxidative stress response. On the other hand, the B1 can reduce cell death with treat H2O2, tBHQ (H2O2 inducer) and Act D (Actinomycin D), an apoptosis inducer. Furthermore, we still don’t know whether B1 protein targeting into nucleus is correlative to anti-death function. In the result, we found that B1 targeting into nucleus can correlate to B1 function. Finally, we analyzed the transcription level by cDNA microarray after EYFP-B1 transfection and try to find some hint for ROS and anti-cell death studies. In the result, the B1 protein may play a multifunction roles, which not only arrest cell cycle but also induce ROS production and cell death. This first finding may provide an insight into the molecular pathogenesis of betanodavirus infection in future.
    Keywords: Betanodavirus, nonstructural protein B1, reactive oxygen species (ROS), oxidative stress respone, anti-oxidant enzyme, cell cycle arrest, anti-apoptosis.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VIII 附錄目錄 X 縮寫表 XI 第一章、緒論 1 第一節、台灣石斑魚養殖概況 1 (一) 石斑魚背景簡介 1 (二) 魚苗養殖現況與瓶頸 1 第二節、神經壞死病毒背景簡介 2 (一) 神經壞死病毒株之發展史 2 (二) 神經壞死病毒感染魚類之宿主病徵 3 (三) 神經壞死病毒之遺傳物質及其蛋白質功能 4 (四) 神壞死病毒引起細胞死亡之研究 4 第三節、活性氧分子(ROS)與氧化壓力 6 (一) 活性氧分子(ROS)的產生和來源 6 (二) 活性氧分子與氧化壓力(oxidative stress) 7 (三) 細胞的抗氧化系統 8 第四節、研究目的與動機 9 第二章、材料與方法 10 第一節、實驗材料 10 (一) 生物材料 10 (二) 抗體 (Antibody) 10 (三) 細胞用試藥 11 (四) 生物反應試劑組 (Kits) 11 (五) 載體 11 (六) 細菌培養基與抗生素之配製 12 (七) 細胞培養試藥 12 (八) 細胞培養液製備 13 (九) 蛋白質樣本萃取溶液 14 (十) 蛋白質電泳及製膠緩衝溶液 15 第二節、實驗儀器 17 第三節、實驗方法及步驟 19 (一) 菌種的培養及菌種的儲存 19 (二) 質體DNA之萃取 19 (三) 聚合酵素連鎖反應 (PCR) 20 (四) 質體剪接及接合反應 21 (五) 轉形反應(transformation) 22 (六) 石斑魚細胞株的培養與繼代 22 (七) 質體轉染細胞 (transfection) 23 (八) 篩選穩定表現外源質體的細胞株 23 (九) 神經壞死病毒之增殖 23 (十) 病毒效價測定 23 (十一) 蛋白質表現量之測定 24 (十二) MTT分析細胞存活率 25 (十三) Annexin V/ Propidium iodide染色分析細胞死亡之試驗 25 (十四) 粒線體膜電位偵測 26 (十五) 流式細胞儀分析細胞內ROS含量變化 26 (十六) Amplex Red偵測細胞內H2O2之分析 26 (十七) 流式細胞儀分析細胞週期變化 27 (十八) Real-time PCR 28 第三章、結果 30 第一節、在石斑魚背鰭細胞株中大量表現神經壞死病毒B1基因可以增加細胞內ROS的含量 30 (一) 使用carboxy-H2DCFDA染劑偵測細胞內ROS含量的變化 30 (二) 使用MitoSOX偵測細胞粒線體內O2-含量變化 31 (三) 用Amplex Red偵測細胞內過氧化氫 (H2O2) 32 第二節、証實B1所誘導之微量氧化壓力可誘導細胞內Cu/ZnSOD、Mn SOD和catalase表現量增加 32 第三節、B1基因可以誘導石斑魚背鰭細胞週期停滯在G1期 33 第四節、証實B1基因大量表達可以減緩H2O2、tBHQ以及Act D所造成的死亡 33 (一)大量表現B1無法減少O2-促進劑tBHP所造成的細胞死亡 34 (二)大量表現B1可以減少H2O2造成的細胞死亡 34 (三)大量表現B1也可以減少H2O2誘導劑tBHQ造成的細胞死亡但不會減少tBHQ所誘導的H2O2 35 (四)大量表現B1可以減少細胞凋亡誘導劑Actionmycin D (Act D)造成的細胞死亡 35 第五節、大量表現神經壞死病毒B1基因對H2O2造成的細胞死亡之影響 36 (一)大量表現B1可以減緩H2O2所造成細胞凋亡早期的PS膜外翻 36 (二)大量表現B1可以減緩H2O2所造成細胞粒線體膜電位失衡 36 第六節、B1進核與否對H2O2造成的細胞死亡之影響 37 (一)篩選神經壞死病毒B1基因中進核序列 37 (二)大量表現EYFP-B1△C質體之穩定細胞株篩選 37 (三)病毒蛋白B1片段C的刪除會對抵抗H2O2 造成的細胞死亡產生影響 38 第七節、利用cDNA Microarray analysis對神經壞死病毒B1進行轉錄體全面的分析 38 (一)樣本製備以及處理 38 (二) Real-time PCR確認 38 (三)cDNA微陣列分析 (cDNA microarray analysis) 39 第八節、神經壞死病毒感染大量或減少B1表現細胞株造成之影響 39 (一)表現B1細胞株可以減少病毒感染後產生的ROS 39 (二)表現B1 antisense RNA細胞株能促進病毒感染後產生的ROS 40 (三)表現B1細胞株可以減少病毒感染後產生的O2- 40 (四) 表現B1 antisense RNA細胞株能促進病毒感染後產生的 O2- 40 第四章、討論 42 第一節、神經壞死病毒蛋白B1促進ROS產生扮演之功能 42 第二節、神經壞死病毒蛋白B1對細胞週期的影響 42 第三節、神經壞死病毒蛋白B1減少細胞死亡之研究 43 第四節、神經壞死病毒蛋白B1對氧化壓力的調控 43 第五章、未來展望 45 參考文獻 46 圖表目錄 表一、病毒效價TCID50 之測定(Reed-Muench 公式) 54 表二、引子設計 55 圖一、證實carboxy-H2DCFDA 可偵測細胞內的ROS 56 圖二、大量表現神經壞死病毒B1基因可以增加細胞內ROS的含量 57 圖三、證實 MitoSOX™ Red可偵測細胞內的superoxide含量 59 圖四、大量表現B1基因可以增加細胞內superoxide的含量 60 圖五、大量表現神經壞死病毒B1基因可以增加細胞內H2O2的含量 61 圖六、大量表現神經壞死病毒B1基因可以誘導細胞內抗氧化酵素Cu/Zn SOD以及Mn SOD之蛋白表現 62 圖七、大量表現神經壞死病毒B1基因可以誘導細胞內抗氧化酵素Catalase之蛋白表現 63 圖八、分析大量表現神經壞死病毒B1基因對細胞週期影響 64 圖九、大量表現神經壞死病毒B1基因在處理superoxide誘導劑tBHP後無法增加細胞存活率 65 圖十、大量表現神經壞死病毒B1基因可以增加處理H2O2後細胞存活率 67 圖十一、大量表現神經壞死病毒B1基因可以增加處理H2O2誘導劑tBHQ後細胞存活率 69 圖十二、大量表現Flag-B1基因細胞株處理tBHQ後細胞內H2O2 含量變化 71 圖十三、大量表現神經壞死病毒B1基因可以增加處理Actinomycin D後細胞存活率 72 圖十四、大量表現Flag-B1基因可以減少處理H2O2後PS膜外翻 74 圖十五、大量表現Flag-B1基因可以減少處理H2O2後粒線體膜電位喪失 75 圖十六、比較不同B1刪除片段影響進核能力的差異 76 圖十七、篩選穩定B1刪除片段影響表現細胞株並比較差異 77 圖十八、B1進核片段刪除會對抵抗過氧化氫的死亡產生影響 78 圖十九、以cDNA Microarray analysis比較B1表現36小時及48小時後基因表現量情形 79 圖二十、以Real-time PCR分析Microarray Analysis中表現量大於2倍以上的基因 80 圖二十一、以cDNA Microarray analysis轉殖B1表現36小時及48小時後用Gene ontology歸類表現量上升或下降大於兩倍的基因 82 圖二十二、B1對細胞的影響 83 圖二十三、表現B1細胞株減少病毒感染後ROS產生 84 圖二十四、減少B1蛋白表現能增加病毒感染後ROS產生 85 圖二十五、表現B1細胞株可以減少病毒感染後superoxide產生 86 圖二十六、減少B1蛋白表現能增加病毒感染後ROS產生 87 圖二十七、B1在病毒感染時可能扮演的角色 88 附錄目錄 附錄一、石斑魚神經壞死病毒基因組結構圖 89 附錄二、ROS在粒線體中的產生與代謝 90 附錄三、細胞週期與調控蛋白 91 附錄四、pEYFP-C1-NNV-B1 質體圖譜 92 附錄五、pcDNA3.1/V5-HIS TOPO-NNV-antisense B1質體圖譜 93 附錄六、p3XFLAG-Myc-CMV-NNV-B1質體圖譜 94 附錄七、利用Amplex® Red偵測細胞內H2O2含量的原理 95 附錄八、利用Carboxy-H2DCFDA染劑偵測細胞內H2O2的原理 96 附錄九、Microarray流程圖 97 附錄十、比較轉殖EYFP以及EYFP-B1於表現36小時後Microarray分析結果 98 附錄十一、比較轉殖EYFP以及EYFP-B1於表現48小時後Microarray分析結果 99 附錄十二、歸類cDNA Microarray analysis分析可能參與的路徑 101

    呂明偉、韓宛娟(2012),石斑魚的病毒性疾病。科學發展,472期,頁66-71。
    周信佑(2006),石斑魚健康種苗之建立與疫苗開發策略。農業生技產業季刊,頁47-50。
    柯德宏(1993),石斑魚的繁養殖。養魚世界雜誌社。
    黃淑敏(2011),石斑魚虹彩病毒疫苗研發,行政院農業委員會家畜衛生試驗所,獸醫專訊 No.3。
    楊玉婷、陳葦芋、陳政忻(2009),石斑魚產業概況及趨勢。動物與水產生技,NO.19。
    羅秉真(1997),南台灣養殖石斑魚病毒性神經壞死症之研究。國立台灣大學動物學研究所碩士論文。
    Ahlberg, J., Marzella, L., and Glaumann, H. (1982). Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab Invest 47, 523-532.
    Le Breton, A., Grisez, L., Sweetman, J., and Ollevier, F. (1997). Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass, Dicentrarchus labrax. J. Fish. Dis. 20, 2, 145–151.
    Aspehaug, V., Devold, M., and Nylund, A. (1999). The phylogenetic relationship of nervous necrosis virus from halibut (Hippoglossus hippoglossus). Bull Eur. Assoc. Fish Pathol. 19, 196–202.
    Balaban, R. S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and ageing. Cell. 120, 483–495.

    Ball L. A., and Johnson K. L. (1999). Reverse genetics of nodaviruses. Adv. Virus. Res. 53, 229-244.
    Bannister, J.V., Bannister, W.H., and Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22, 111-180.
    Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281, 11374-11383.
    Boonstra, J. and J.A. Post. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337,1-13.
    Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8, 911-922.
    Cadenas, E., and Davies, K.J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29, 222-230.
    Chang, C.W., Su, Y.C., Her, G.M., Ken, C.F., and Hong, J.R. (2011). Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells. PLoS ONE 6, e25853.
    Chen, K., Albano, A., Ho, A., and Keaney, J.F., Jr. (2003). Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activation. J Biol Chem 278, 39527-39533.
    Chen, L.J., Su, Y.C., and Hong, J.R. (2009). Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385, 444-454.
    Chen, S.P., Wu, J.L., Su, Y.C., and Hong, J.R. (2007). Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 12, 1043-1060.
    Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., and Gibson, S.B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15, 171-182.
    Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040-1052.
    Chi, S.C., Lin, S.C., Su, H.M., and Hu, W.W. (1999). Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus Res 63, 107-11
    Clarke, P., Tyler, K.L. (2009). Apoptosis in animal models of virus-induced disease.Nat. Rev. Microbiol. 7, 144–155.
    De Caprio, J. A., J. W. Ludlow, J. Figge, J. Y. Shew, C. M. Huang, W. H. Lee,E. Marsilio, E. Paucha, and D. M. Livingston. (1988). SV40 large tumorantigen forms a specific complex with the product of the retinoblastomasusceptibility gene. Cell 54:275–283.
    Del Rio MJ, Velez-Pardo C. (2002). Monoamine neurotoxins-induced apoptosis in lymphocytes by a common oxidative stress mechanism: involvement of hydrogen peroxide (H2O2), caspase-3,and nuclear factor kappa-B (NF-kB), p53, c-Jun transcriptionfactors. Biochem Pharmacol; 63,677–88.
    Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B.Lawrence, and D. M. Livingston. (1994). Molecular cloning and functionalanalysis of the adenovirus E1A-associated 300-kD protein (p300) reveals aprotein with properties of a transcriptional adaptor. Genes Dev. 8:869–884.
    Fanning, E., and R. Knippers. (1992). Structure and function of simian virus 40 large tumor antigen. Annu. Rev. Biochem. 61:55–85.
    Fisher RP, Morgan DO. (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase.Cell 78, 713.
    Finkel, T. (2003). Oxidant signals and oxidative stress. Curr Opin Cell Biol 15, 247-254.
    Flemington, E. K. (2001). Herpesvirus lytic replication and the cell cycle:arresting new developments. J. Virol. 75:4475–4481.
    Fukuda, Y., Nguyen, H. D., Furuhashi, M., and Nakai, T. (1996). Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis. Fish Pathol. 31, 165-170.
    Genova, M.L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti Castelli, G., and Lenaz, G. (2001). The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett 505, 364-368.
    Guo, Y.X., Wei, T., Dallmann, K., and Kwang, J. (2003). Induction of caspase-dependent apoptosis by betanodaviruses GGNNV and demonstration of protein alpha as an apoptosis inducer. Virology 308, 74-82.
    Hamanaka, R.B., and Chandel, N.S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35, 505-513.
    He, F., Fenner, B.J., Godwin, A.K., Kwang, J. (2006). White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. J. Virol. 80, 3884–3892.
    He, F., Syed, S.M., Hameed, A.S., Kwang, J. (2009). Viral ubiquitin ligase WSSV222 is required for efficient white spot syndrome virus replication in shrimp. J. Gen. Virol. 90, 1483–1490.
    Hosakote Y. M., Liu T., Castro S. M., Garofalo R. P., and Casola A., (2009). Respiratory Syncytial Virus Induces Oxidative Stress by Modulating Antioxidant Enzymes, Am J Respir Cell Mol Biol. 41, 3, 348-357
    Hong, J.R., Lin, T.L., Hsu, Y.L., and Wu, J.L. (1998). Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology 250, 76-84.
    Johnson, D. C. & Huber, M. T. (2002). Directed egress of animal viruses promotes cell-to-cell spread. Journal of Virology 76, 1–8.
    Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441, 523-540.
    Masaki, N., Kyle, M.E., Serroni, A., and Farber, J.L. (1989). Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys 270, 672-680.
    Menzies, R.A., and Gold, P.H. (1971). The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246, 2425-2429.
    Mi, J., Li, Z. Y., Ni, S., Steinwaerder, D. & Lieber, A. (2001). Induced apoptosis supports spread of adenovirus vectors in tumors. Human Gene Therapy 12, 1343–1352.
    Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371.
    Morinobu, S., and Kumagai, S. (2004). [Glutathione, glutathione peroxidase (GPx), glutathione S-transferase (GST)]. Nihon Rinsho 62 Suppl 11, 557-559.
    Mugge, A. (1998). The role of reactive oxygen species in atherosclerosis. Z Kardiol 87, 851-864.
    Munday, B.L., Nakai, T., and Nguyen, H.D. (1994). Antigenic relationship of the picorna-like virus of larval barramundi, Lates calcarifer Bloch to the nodavirus of larval striped jack, Pseudocaranx dentex (Bloch & Schneider). Aust Vet J 71, 384-385.
    Munday, B. L. and Nakai, T. (1997). Special topic review: Nodaviruses as pathogens in larval and juvenile marine finfish. World J Microbiol Biotechnol .13, 375 -381.
    Munday, B. L., Kwang, J. and Moody, N. (2002). Betanodavirus infection of teleost fish: a review. J Fish Dis, 25, 127-142.
    Nagai, T., and Nishizawa, T. (1999).Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J. Gen. Virol. 80, 3019-3022.
    Nauseef, W.M. (2008). Biological roles for the NOX family NADPH oxidases. J Biol Chem 283, 16961-16965.
    Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63, 1633-1636.
    Nishizawa, T., Mori, K., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K., (1995).Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J. Gen. Virol. 76, 1563 -1569.
    Novo, E., and Parola, M. (2008). Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1, 5.
    Packer, L. (1992). Interactions among antioxidants in health and disease: vitamin E and its redox cycle. Proc Soc Exp Biol Med 200, 271-276.
    Packer, L., Tritschler, H.J., and Wessel, K. (1997). Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22, 359-378.
    Paroli, M., Schiaffella, E., Di Rosa, F. & Barnaba, V. (2000). Persisting
    viruses and autoimmunity. Journal of Neuroimmunology 107, 201–204.
    Johansen, R., Sommerset, I., Torud, B., Korsnes, K., Hjortaas, M.J., Nilsen, F., Nerland, A.H., and Dannevig, B.H. (2004). Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 27, 591-601.
    Salonen, A., Ahola, T., and Kaariainen, L. (2005). Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285, 139-173.
    Samali, A., Gorman, A.M., and Cotter, T.G. (1996). Apoptosis -- the story so far. Experientia 52, 933-941.
    Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749-1760.
    Su, Y.C., Wu, J.L., and Hong, J.R. (2009). Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 385, 143-154.
    Su, Y.C., and Hong, J.R. (2010). Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and Complex II inhibition in vitro and in vivo. J Biol Chem.
    Su, Y.C., Wu, J.L., and Hong, J.R. (2011). Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis 16, 272-287.
    Sumimoto, H. (2008). Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275, 3249-3277
    Toffolo, V., Negrisolo, E., Maltese, C., Bovo, G., Belvedere, P., Colombo, L., and Valle, L.D. (2007). Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol 43, 298-308.
    hannickal, V.J., and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279, L1005-1028.
    Thiery, R., Cozien, J., de Boisseson, C., Kerbart-Boscher, S., and Nevarez, L. (2004). Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J Gen Virol 85, 3079-3087.
    Wei, Y.H. (1998). Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217, 53-63.
    Wu, H.C., Chiu, C.S., Wu, J.L., Gong, H.Y., Chen, M.C., Lu, M.W., and Hong, J.R. (2008). Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish Shellfish Immunol 24, 436-449.
    Yoshikoshi, K., and Inoue, K.(1990). Viral nervous necrosis in hatchery-reared larve and juveniles of Japanase parrotfish, Oplegnathus fasciatus . J Fish Dis. 13, 69-77.
    Zhang, H., Kong, X., Kang, J., Su, J., Li, Y., Zhong, J., and Sun, L. (2009). Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110, 376-388.

    下載圖示 校內:2018-09-02公開
    校外:2018-09-02公開
    QR CODE