簡易檢索 / 詳目顯示

研究生: 陳福琳
Chen, Fu-Lin
論文名稱: 低成本敏染式太陽能電池染料與電解液的開發
Dye Materials and Ionic Liquids for Low-cost Dye-sensitized Solar Cells
指導教授: 孫亦文
Sun, I-Wen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 141
中文關鍵詞: 敏染太陽能電池離子液體電解液有機染料
外文關鍵詞: Dye-sensitized solar cell, Ionic liquid, Photovoltaic cell, Transition-metal complexes
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球的電力,約80%都還是經由火力來發電,而燃燒所產生的二氧化碳,造成溫室氣體效應,氣候變遷、空氣污染問題以及資源日趨短缺之故,而早在1970年代,美國太空就已有太陽能發電做為動力供應主要來源,太陽能的優點是取之不竭除了夜晚,這也是近年以矽晶圓為主的太陽能電池市場快速成長的原因。 然而矽晶圓為主的太陽能發電技術其成本畢竟高出傳統電力產生方式甚多,因此目前市場仍只能侷限於特定用途,也因此世界上主要的研究單位,均致力於投入太陽能相關技術的研究,企求開發出新的物質,能降低產品成本並提升效能。
    薄膜式太陽能電池由於只需使用一層極薄光電材料,相較於矽晶圓必須維持一定厚度而言,材料使用非常少,而且由於薄膜是可使用軟性基材,應用彈性大,如果技術能發展成熟,相信其市場面將較矽晶方式寬廣許多。
    本論文的主要研究內容在低成本染敏式太陽能電池裡的染料材料及離子液體為主的電解液對轉換效率的影響,為了提升太陽能的利用效率可以從多方面下手,在實驗研究內,希望從開發新穎低成本的染料材料及電解液的部分著手,染料的設計影響到整體電子跳躍的過程及電荷再結合的速度,希望能夠設計出性質較穩定,轉換效率佳並且便宜的材料,電解液的部份運用室溫離子溶液其環保、無毒性及優越的導電性等等優點,設計出高效率之電解液。希望可以發展出價格便宜、高轉換效率及堅固耐用的敏染式太陽能電池。
    本論文的研究成果:(1)我們開發了僅有十分之ㄧ價格的染料,進而得到約6%的光電轉換效率。(2)加入奈米核殼材料增加導電度及降低黏度,使染料激發的電子在太陽電池的傳遞過程中減少損失,組裝成為電池之後能夠增加約40%轉換效率。(3)Diels Alder反應將五苯素帶進低價且高產率的製程。

    Nowadays nearly 80% of the global electricity is produced by coal-fired power generation. Since coal-fired power generation would impose a severe negative effect on the environment due to the carbon dioxide emissions, cleaner technologies are desired. The current energy system will come to find a renewable energy sources - solar energy. The sun is the Earth's ultimate energy resource, and it is inexhaustible as long as the solar system exists. Therefore, it is very likely that the future of our energy needs depend on the renewable solar energy resource. “Classical” silicon photovoltaic cells (PVCs) have an excellent performance, for instance, single-crystal silicon cells have a energy conversion efficiency as high as 24.7%. However, the PVCs are much more expensive than traditional fuel energy.
    Silicon solar panels are still costly, bulky, and brittle. Scientists are continuously searching for low-cost, miniature photovoltaic technologies. Thin, flexible, film-like dye-sensitiezed solar cells (DSSCs) is becoming to be the trend of commercial production.
    This research addresses the development of new dyes and electrolytes for low-cost DSSC application. Mass application of DSSCs is currently limited by manufacturing complexity and long-term stability associated with the liquid redox electrolyte used in the cells. As part of development of a stable electrolyte system, ionic liquid have been screened as promising electrolytes due to their non-volatility, good ionic conductivity, good thermal stability, and large electrochemical window. These properties favor the construction of efficient, and robust DSSCs.
    The main objective in this study are: (1) synthesis of new low-cost organic dyes, (2) increase the module DSSC efficiency by dispersing carbon/metal core-shell nanoparticles in ionic liquid electrolytes, and (3) using Diels-Alder reaction to greatly improve the yield of synthesizing soluble pentacene precursor that can be used in the fabrication of high performance, solution processed (spin-coated) OTFTs.

    Contents 中文摘要 …………………………………………I Abstract ……………………………………….II 致謝 …………………IV Content …………………………………….V List of Figures …………………………………VII List of Tables …………………………………………………………X CHAPTER 1 INTRODUCTION ………………………………1 CHAPTER 2 LITERATURES SURVEY ………………………6 2.1 Photoelectrochemical Cells …………………………7 2.1.1 Types of Photoelectrochemical Cells ……………………….11 2.1.2 Dye-sensitized Solar Cells ………………………….20 2.1.3 DSSC Research and Development …………………………………25 2.2 Ionic Liquids …..…………………………………………..28 2.2.1 Room Temperature Ionic Liquids ……………………………………………28 2.2.2 The development of Ionic Liquids ……………………………29 2.2.3 Ionic Liquids for Energy Applications …………………………31 CHAPTER 3 EXPERIMENTAL METHODS ……………………….33 3.1 Chemicals, Materials and preparation of Samples ……………………………34 3.2 Experimental …………………………………………35 3.2.1 Synthesis of Ionic Liquids ………………………35 3.2.2 Porous TiO2 and Pt Electrodes ……………………………………………….37 3.2.3 DSSCs Assembly ……………………………………………………………38 3.2.4 Measurements of DSSCs ……………………………………………………38 3.3 Instrument analyses ……………………………………………………………39 3.3.1 X-ray Diffraction Spectroscopy (XRD) ……………………………39 3.3.2 Scanning Electron Microscopy and Transmission Electron Microscopy (SEM, TEM) ……………………………………………………39 3.3.3 Nuclear Magnetic Resonance (NMR) ………………………………………40 3.3.4 Thermal and Electrical Conductivity (K, EC) ……………………41 3.3.5 Soalr Simulator System ……………………………………………41 3.3.6 X-ray Absorption Spectroscopy (XAS) ………………………………42 3.3.7 Ultra-Visible Spectroscopy (UV-VIS) ................................................44 3.3.8 Fourier Transform Infrared Spectroscopy (FTIR) …………44 3.3.9 Thermogravimetric analysis (TGA) …………………………45 CHAPTER 4 RESULTS AND DISCUSSION …………………………46 4.1 Preparation of Halide-free Ionic Liquids Using Carbonate Anions ………47 4.2 Ionic Liquid-based Electrolytes with Copper Nanoparticles for Dye-sensitized Solar Cells …………………………………………………6 4.3 Nanosize Copper Dispersed Ionic Liquids as an Electrolyte of New Dye-sensitized Solar Cells ………………………………………………….65 4.4 Cu@C nanoparticles dispersed RTILs used in the DSSC electrolyte ………73 4.5 Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors …………………………………………………………….83 4.6 Synthesis and Characterization of Three Organic Dyes with Various Donors and Rhodanine Ring Acceptor for Use in Dye-Sensitized Solar Cells ………………………………………………97 4.7 Theromolysis of A Soluble Pentacene Precursor onto Organic Thin-Film Transistors …………………………………110 CHAPTER 5 CONCLUSIONS ……………………………………………18 REFERENCES …………………………………………………………………123

    References
    1. Adachi, C., Tsutsui, T., Saito, S., 1989. Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 55, 1489.
    2. Adegoke, O.A., Idowu, O.S., Olaniyi, A.A., 2006. J. Iran. Chem. Soc. 3.
    3. Ankudinov, A.L., Ravel, B., Rehr, J.J., Conradson, S.D., 1998. Phys. Rev. B 58.
    4. Archer, M.D., 2006. Nanostructured and Photoelectrochemical System for Solar Photon Conversion 3.
    5. Audrieth, L.F., Long, A., Edwards, R.E., 1936. Fused "Onium" Salts as Acids. Reactions in Fused Pyridinium Hydrochloride. J. Am. Chem. Soc. 58.
    6. Banqui, W., Ramana, G., Reddy, Robin, D., Rogers, 2001. Novel ionic liquid thermal storage for solar thermal electric power systems. International Solar Energy Conference, 445–451.
    7. Barker, G.C., 1966. J. Electrochem. Soc. 113, 1174-1181.
    8. Beckmann, K.H., Memming, R., 1969. J. Electrochem. Soc. 116, 368-373.
    9. Becquerel, E., 1839. Comptes Rend. Acid Sci. 9, 145-149, 561-567, 711-713.
    10. Berginc, M., Opara Krašovec, U., Hočevar, M., Topič, M., 2008. Performance of dye-sensitized solar cells based on Ionic liquids: Effect oftemperature and iodine concentration. Thin Solid Films 516, 7155–7159.
    11. Bisquert, J., 2002. Theory of the impedance of electron diffusion and recombation in a thin layer. J. Phys. Chem. B 106, 325-333.
    12. Boddy, P.J., 1968. Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 115, 199-203.
    13. Boddy, P.J., Brattain, W., 1962. Effect of cupric ion on the electrical properties of the germanium-aqueous electrolyte interface. J. Electrochem. Soc. 109, 812-818.
    14. Boddy, P.J., Kahng, D., Chen, Y.S., 1968. Oxygen evolution on potassium tantalate anodes. Electrochim. Acta. 13, 1311-1328.
    15. Bolto, B.A., McNeill, R., Weiss, D.E., 1963. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aus. J. Chem. 16, 1090-1103.
    16. Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Gratzeb, M., 1996. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168-1178.
    17. Boschloo, G., Hagfeldt, A., 2005. Activation energy of electron transport in dye-sensitized TiO2 solar cells. . J. Phys. Chem. B 109, 12093-12098.
    18. Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T., 2001. Phys. Chem. Chem. Phys 3.
    19. Cass, M.J., Qiu, F.L., Walker, A.B., Fisher, A.C., Peter, L.M., 2003. Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J. Phys. Chem. B 107, 113-119.
    20. Cass, M.J., Walker, A.B., Martinez, D., Peter, L.M., 2005. Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B 109, 5100-5107.
    21. Chan, B.K.M., Chang, N.-H., Grimmett, M.R., 1977. Synthesis and thermolysis of imidazole quaternary-salts. Aust. J. Chem. 30, 2005-2013.
    22. Chang, T., Robertson, A., Rivera, C., 2006. Characterization of phosphonium ionic liquids. Abstracts of Papers of the American Chemical Society, 231.
    23. Chattopadhyay, N., 2003. Excited state proton transfer of carbazole. A convenient way to study microheterogeneous environments. . Int. J. Mol. Sci. 4, 460-480.
    24. Chen, F.L., Sun, I.W., Wang, H.P., Huang, C.-H., 2009. J. Nanomat.
    25. Chen, J., Officer, D.L., Pringle, J.M., MacFarlane, D.R., Too, C.O., Wallace, G.G., 2005. Electrochemical and Solid-State Letters 8.
    26. Chen, Z.G., Li, F.Y., Huang, C.H., 2007. Curr. Org. Chem. 11.
    27. Chien, Y.C., Wang, H.P., Yang, Y.W., 2001. Mineralization of CCl4 with copper oxide. Environ. Sci. Technol. 35, 3259-3262.
    28. Chisholm-Brause, C.J., O'Day, P.A., Brown, G.E., Parks, G.A., 1990. Nature 348.
    29. Chum, H.L., Koch, V.R., Miller, L.L., Osteryoung, R.A., 1975. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room-temperature molten-salt. J. Am.Chem. Soc. 97, 3264-3265.
    30. Copper, E.I., O'Sullivan, E.J.M., 1992. Proceedings of the Eighth International Symposium of Molten Salts. Physical and High Temperature Materials Division Proceedings.
    31. Croce, G., Arrais, A., Diana, E., Civalleri, B., Viterbo, D., Milanesio, M., 2004. The interpretation of the short range disorder in the Fluorene-TCNE crystal structure. Int. J. Mol. Sci. 5, 93-100.
    32. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke , J.F., 2005. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn 37, 559–568.
    33. Daibin, K., Peng, W., Seigo, I., Grätzel, M., 2006. J. Am.Chem. Soc. 128.
    34. Dewald, J.F., 1960a. The charge and potential distributions at the zinc oxide electrode. Bell Syst. Tech. J. 39, 615-639.
    35. Dewald, J.F., 1960b. Experimental techniques for the study of semiconductor electrodes. in Gatos, 205-224.
    36. Ding, S.F., Xu, M.Q., Zhao, G.C., Wei, X.W., 2007. Electrochemistry communications 9.
    37. Doimitrakopoulos, C.D., Malenfant, P.R.L., 2002. Adv. Mater. 14, 99-117.
    38. Dupont, J., Suarez, P.A.Z., de Souza, R.F., 1998. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 95, 1626-1639.
    39. Durr, M., Schmid, A., Obermaier, M., Rosselli, S., Yasuda, A., Nelles, G., 2005. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat. Mater. 4, 607-611.
    40. Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Hagfeldt, A., 2005. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Mat. Solar Cells 87, 117-131.
    41. Fannin, A.A., Jr., F., D. A. , King, L.A., Landers, J.S., Piersma, B.J., Stech, D.J., Vaughn, R.L., Wilkes, R.L., Williams, J.L., 1984. Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids: phase-transitions, densities, electrical conductivities and viscosities. J. Phys. Chem. 88, 2614-2661.
    42. Ferrere, S., Zaban, A., Gregg, B.A., 1997. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 101, 4490-4493.
    43. Frank, A.J., Kopidakis, N., van de Lagemaat, J., 2004. Electrons in nanostructured TiO2 solar cells: transport recombination and photovoltaic properties. Coord. Chem. Reviews 248, 1165-1179.
    44. Fuller, J., Carlin, R.T., DeLong, H.C., 1994. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate – model for room-temperature molten-salt. J. Chem. Soc., Chem. Commun., 299-300.
    45. Gabriel, S., Weiner, J., 1888. Ueber einige Abkömmlinge des Propylamins. Ber. Bunsenges. Physik. Chem. 21, 2669–2679.
    46. Gaina, L., Cristea, C., Moldovan, C., Porumb, D., Surducan, E., Deleanu, C., Mahamoud, A., Barbe, J., Silberg, I.A., 2007. Microwave-assisted synthesis of phenothiazine and quinoline derivatives. Int. J. Mol. Sci. 8, 70-80.
    47. Gale, R.J., Gilbert, B., Osteryoung, R.A., 1978. Raman-spectra of molten aluminum-chloride-1- butylpyridinium chloride system at ambient-temperatures. Inorg. Chem. 17, 2728-2729.
    48. Gerischer, H., 1960. In Gatos, 177-202.
    49. Gerischer, H., 1966. J. Electrochem. Soc. 113, 1174-1181.
    50. Ghalwa, N.M.A., Abdel-Latif, M.S., 2005. J. Iran. Chem. Soc. 2.
    51. Ginzburg, V.I., Veselovskii, V.I., 1952. Zhur. Fiz. Khim. 26, 60-71.
    52. Gobrecht, H., Kuhnkies, R., Tausend, A., 1959. Untersuchung der Phasengrenzfläche Halbleiter/Elektrolyt am System Selen/Schwefelsäure. Z. Elektrochem. 63, 541-550.
    53. Grätzel, M., Durrant, J.R., 2006. Nanostructured and Photoelectrochemical System for Solar Photon Conversion 3.
    54. Granstroem, M., Pretritsch, K., Arias, A.C., Lux, A., Andersson, M.R., Friend, R.H., 1998. Nature 395.
    55. Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., 2005. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 109, 12525-12533.
    56. Hagiwara, R., lto, Y., 2001. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluorine Chem. 105, 221-227.
    57. Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, D.R., 2005. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J. Am. Chem. Soc. 127, 3456-3462.
    58. Hara, K., Dan-oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., 2004. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. . Langmuir 20, 4205-4210.
    59. Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., 2003a. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. . New J. Chem. 27, 783-785.
    60. Hara, K., Kurashige, M., Ito, S., Shinpo, A., Suga, S., Sayama, K., Arakawa, H., 2003b. Chem. Commun.
    61. Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., Arakawa, H., 2003c. J. Phys. Chem. B 107.
    62. Hara, K., Sato, T., Katoh, R., Furube, A., Yoshihara, T., Murai, M., 2005. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mat. 15, 246-252.
    63. Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., Arakawa, H., 2003d. Sol. Energy Mater. Sol. Cells 77.
    64. Herwig, P.T., Müllen, K., 1999. Adv. Mater. 11.
    65. Horiuchi, T., Miura, H., Sumioka, K., Uchida, S., 2004. High effeciency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218-12219.
    66. Horiuchi, T., Miura, H., Uchida, S., 2003. Chem. Commun.
    67. Horowitz, G., Fichou, D., Peng, X., Garnier, F., 1994. Synth. Met. 41-43.
    68. Hoyer, P., Weller, H., 1995. Potential-dependent electron injection in nanoporous colloidal ZnO films. J. Phys. Chem. 99, 14096-14100.
    69. Hsiao, M.C., Wang, H.P., Yang, Y.W., 2001. EXAFS and XANES studies of copper in a solidified fly ash. Environ. Sci. Technol. 35, 2532-2535.
    70. Huang, C.H., Wang, H.P., Chang, J.E., Eyring, E.M., 2009. Chem. Commun. 31, 4663-4665.
    71. Huang, H.L., Wang, H.P., Wei, G.-T., Sun, I.-W., Huang, J.-F., Yang, Y.W., 2006. Environ. Sci. Technol. 40.
    72. Huber, G.W., Shabaker, J.W., Dumesic, J.A., 2003. Science 300, 2075-2077.
    73. Huo, L., He, C., Han, M., Zhou, E., Li, Y.F., 2007. Alternating copolymers of electron-rich arylamine and electron-deficient 2,1,3-benzothiadiazole: Synthesis, characterization and photovoltaic properties. . J. Polym. Sci., Part A: Polym. Chem. 45, 3861-3871.
    74. Hurley, F.H., Wier, T.P., 1951. Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc. 98, 203-206.
    75. Ito, S., Zakeeruddin, S.M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., 2006. High-efficiency organic dye-sensitized solar cells controlled by nanocrystalline TiO2 electrode thickness. Adv. Mat. 18, 1202-1205.
    76. Jung, I., Lee, J.K., Song, K.H., Song, K., Kang, S.O., Ko, J., 2007. J. Org. Chem. .
    77. Jurchescu, O.D., Baas, J., Palstra, T.T.M., 2004. Appl. Phys. Lett. 84, 3061-3062.
    78. Kalita, P., 1935. Mem. Phys. ukrain. 4, 65-75.
    79. Karkamkar, A., Aardahl, C., Autrey, T., 2007. Recent Developments on Hydrogen Release from Ammonia Borane. Material Matters 2, 6-9.
    80. Kasgkarev, V., Kosonogoya, K.M., 1948. Jhur. Eksotl. Fiz. 18, 927-936.
    81. Kasthuri, J., Santhanalakshmi, J., Rajendiran, N., 2008. J. Iran. Chem. Soc. 5.
    82. Katoh, R., Furube, A., Barzykin, A.V., Arakawa, H., Tachiya, M., 2004. Coord. Chem. Reviews 248, 13-14.
    83. Khazraji, A.C., Hotchandani, S., Das, S., Kamat, P.V., 1999. Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. . J. Phys. Chem. B 103, 4693-4700.
    84. Kietzmann, R., EWillig, F., Weller, H., Vogel, R., Nath, D.N., Eichberger, R., Liska, P., Lehnert, J., 1991. Picosecond time resolved electron injection from excited cresylviolet monomers and Cd3P2 quantum dots into TiO2. Mol. Cryst. Liq. Cryst. 194, 169-180.
    85. Klauk, H., Halik, M., U, Z., Eder, F., Schmid, G., Dehm, C., 2003. Appl. Phys. Lett. 82, 4175-4177.
    86. Knipp, D., Street, R.A., Krusor, B., Apte, R., Ho, J., 2002. J. Non-Cryst. Solids, 299-302, 1042-1046.
    87. Koz, B., Kiskan, B., Yagci, Y., 2008. Synthesis and characterization of polyacetylene with side-chain thiophene functionality. Int. J. Mol. Sci. 9, 383-393.
    88. Kubo, W., Kitamura, T., Hanabusa, K., Wada, Y., Yanagida, S., 2002a. Quasi-solad-state dye-sensitized solar cell using rom temperature molten salts and a low molecular weight gelator. Chem. Commun. 4, 374-375.
    89. Kubo, W., Makimoto, Y., Kitamura, T., Wada, Y., Yanagida, S., 2002b. Chem. Lett. 31.
    90. Kulkarni, A.P., Wu, P.-T., Kwon, T.W., Jenekhe, S.A., 2005. Phenothiazine-phenylquinoline donor−acceptor molecules: effects of structural isomerism on charge transfer photophysics and electroluminescence. . J. Phys. Chem. B 109, 19584-19594.
    91. Kumar, A., Paliwal, M., Ameta, R., Ameta, S.C., 2008. J. Iran. Chem. Soc. 5.
    92. Lai, G., Bu, X.R., Santos, J., Mintz, E.A., 1997. Synlett.
    93. Lai, R.Y., Fabrizio, E.F., Lu, L., Jenekhe, S.A., Bard, A.J., 2001. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New Donor Acceptor Molecule: 3,7-[Bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine. . J. Am. Chem. Soc. 123, 9112-9118.
    94. Lazorenko-Manevich, R.M., 1962. Redistribution of potential at a semiconductor electrolyte interface under the influence of light. Russ. J. Phys. Chem. 36, 1110-1113.
    95. Li, S.L., Jiang, K.J., Shao, K.F., Yang, L.M., 2006. Chem. Commun.
    96. Li, W., Qiao, J., Duan, L., Wang, L.D., Qiu, Y., 2007. Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices. Tetrahedron 63, 10161-10168.
    97. Li, X.H., Gui, J., H., Y., Wu, W.J., Li, F.Y., Tian, H., Huang, C.H., 2008. A new carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell. Inorg. Chim. Acta 361, 2835-2840.
    98. Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., Li, Z., 2007. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 111, 4465-4472.
    99. Liao, C.Y., Wang, H.P., Chen, F.L., Huang, C.H., Fukushima, Y., 2009. J. Nanomat.
    100. Lin, Y.-Y., Gundlach, D.J., Nelson, S., Jackson, T.N., 1997. IEEE Trans. Electron Devices 44.
    101. Möllers, F., Fischer, C.H., Siebentritt, S., Könenkamp, R., Lux-Steiner, M., 1998. CuInS2 as extremely thin absorber in the eta-solar cell. Proc. 2nd. World Conf. and Exhibition on Photovoltaics, 209-211.
    102. Möllers, F., Memming, R., 1972. Electrochemical studies of semiconducting SnO2 electrodes. Ber. Bunsenges. Physik. Chem. 76, 469-475.
    103. MacFarlane, D.R., Forsyth, S.A., Golding, J., Deacon, G.B., 2002. Ionic liquid based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chemistry 4, 444-448.
    104. MacFarlane, D.R., Golding, J., Forsyth, S., Forsyth, M., Deacon, G.B., 2001. Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun.
    105. Maldonado, S., Fitch, A.G., lewis, N.S., 2006. Nanostructured and Photoelectrochemical System for Solar Photon Conversion 3.
    106. Matsumoto, H., Matsuda, T., Tsuda, T., Hagiwara, R., Ito, Y., Miyazaki, Y., 2001. Chem. Lett. 30, 26.
    107. Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., 2007. Polymer-based solar cells. Mat. Today 10, 28-33.
    108. Mori, S., Ida, K., Ue, M., 1990. U.S. Partent 4, 892,922.
    109. Nagano, M., Hasegawa, T., Myoujin, N., Yamaguchi, J., Itaka, K., Fukumoto, H., Yamamoto, T., Koinuma, H., 2004. Jpn. J. Appl. Phys. Part2-Lett. 43, L315-L316.
    110. Nardi, J.C., Hussey, C.L., King, L.A., 1948. U.S. Partant 4, 122,245.
    111. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humpbry-Baker, R., Miiller, E., Liska, P., Vlachopoulos, N., Grätzel, M., 1993. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. . J. Am. Chem. Soc. 115, 6382-6390.
    112. Nelson, J., Chandler, R.E., 2004. Random walk models of charge transfer and transport in dye sensitized system. Coord. Chem. Reviews 248, 1181-1194.
    113. Ning, W., Hong, L., Jianbao, L., L. Xin, 2006. Appl. Phys. Lett. 89.
    114. Nogueira, A.F., Longo, C., de Paoli, M.A., 2004. Polymers in dye-sensitized solar cells: overview and perspectives. Coord. Chem. Reviews 248, 1455-1468.
    115. Nozik, A.J., Thacker, B.R., Olson, J.M., 1985. Quantization effects in the photoelectrochemistry of superlattice photoelectrodes. Nature 316, 253-257.
    116. Palomares, E., Clifford, J.N., Haque, S.A., Lutz, T., Durrant, J.R., 2003. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475-482.
    117. Papageorgiou, N., Athanassov, Y., Armand, M., Bonho^te, P., Pettersson, H., Azam, A., Grätzel, M., 1996a. J. Electrochem. Soc. 143, 3099.
    118. Papageorgiou, N., Athanassov, Y., Armand, M., Bonhoˆte, P., Pettersson, H., Azam, A., Grätzel, M., 1996b. J. Electrochem. Soc. 143.
    119. Peng, W., Shiak, M.Z., Jacques-E, M., Grätzel, M., 2003a. J. Phys. Chem. B 107.
    120. Peng, W., Shiak, M.Z., Pascal, C., Ivan, E., Grätzel, M., 2003b. J. Am.Chem. Soc. 125.
    121. Peter, L.M., Wijayantha, K.G.U., 2000. Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochim. Acta. 45, 4543-4551.
    122. Pittman, R.W., 1953. J. Chem. Soc., 855-860, 3888-3893.
    123. Pramod, K., Singh, K.-I.K., Jae-Wook, L., Rhee, H.-W., 2006. Polymer electrolytewith ionic liquid for DSSC application. Phys. stat. sol. 203, 88-90.
    124. Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monni, G., Intorre, L., 2006. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry 8, 238–240.
    125. Putseiko, E.K., 1953a. Doklady Akad. Nuak. S.S.S.R. 91, 1071-1074.
    126. Putseiko, E.K., 1953b. Doklady Akad. Nuak. S.S.S.R. 90, 1005-1008.
    127. Regan, B.O., Grätzel, M., 1991. Nature 353, 737.
    128. Rensmo, H., Keis, K., Lindstrom, H., Sodergren, S., Solbrand, A., Hagfeldt, A., 1997. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101, 2598-2601.
    129. Sayama, K., Sugihara, H., Arakawa, H., 1998. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 10, 3825-3832.
    130. Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H., 2002. J. Phys. Chem. B 106.
    131. Schön, J.H., 2001. Appl. Phys. Lett. 79.
    132. Schön, J.H., Kloc, C., Batlogg, B., 2000. Org. Electron 1.
    133. Seddon, K.R., 1997. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351-356.
    134. Seddon, K.R., Stark, A., Torres, M.-J., 2000. Influence of chloride, water and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275-2287.
    135. Shaheen, S.E., Brabec, C.J., Sariciftic, N.S., Padinger, F., Fromherz, T., Hummelen, J.C., 2001. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841-843.
    136. Sheldon, R.A., 2001. Catalytic reactions in ionic liquids. Chem. Commun., 2399-2407.
    137. Siebentritt, S., Ernst, K., Fischer, C.H., Könenkamp, R., Lux-Steiner, M., 1997. CdTe and CdS as extremely thin absorber materials in the eta-solar cell. Proc. 14th. Eur. Conf. Photovoltaic Sci. Technol, Barcelona, Spain, 1823-1826.
    138. Stathatos, E., Lianos, R., Zakeeruddin, S.M., Liska, P., Grätzel, M., 2003. A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid. Chem. Mater. 15, 1825-1829.
    139. Staub, K., Levina, G.A., Fortd, A., 2003. Synthesis and stability studies of conformationally locked 4-(diarylamino)aryl- and 4-(dialkylamino)phenyl-substituted second-order nonlinear optical polyene chromophores. . J. Mater. Chem. 13, 825-833.
    140. Stegemann, H., Rhode, A., Reiche, A., Schnittke, A., Füllbier, H., 1992. Room-temperature molten polyiodides. Electrochim. Acta. 37, 379-382.
    141. Stern, E.A., Newville, M., Ravel, B., Haskel, D., Yacoby, Y., 1995a. Physica B 209, 117-130.
    142. Stern, E.A., Newville, M., Ravel, B., Haskel, D., Yacoby, Y., 1995b. The UWXAFS analysis package: philosophy and details. Physica B 209.
    143. Sugden, S., Wilkins, H., 1929. The parachor and chemical constitution. Part XII. Fused metls and salts. J. Chem. Soc., 1291-1298.
    144. Sun, X.B., Liu, Y.Q., Xu, X.J., Yang, C.H., Yu, G., Chen, S.Y., Zhao, Z.H., Qiu, W.F., Li, Y.F., Zhu, D.B., 2005. Novel Electroactive and Photoactive Molecular Materials Based on Conjugated Donor−Acceptor Structures for Optoelectronic Device Applications. . J. Phys. Chem. B 109, 10786-10792.
    145. Tang, C.W., 1987. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183-185.
    146. Tang, C.W., Van Slyke, S.A., 1987. Appl. Phys. Lett. 51.
    147. Tokuda, H., Hayamizu, K., Ishii, K., Hasan-Susan, M.A.B., Watanabe, M., 2004. J. Phys. Chem. B 108.
    148. Tokuda, H., Hayamizu, K., Ishii, K., Hasan-Susan, M.A.B., Watanabe, M., 2005. J. Phys. Chem. B 109.
    149. Tokuda, H., Tsuzuki, S., Hasan-Susan, M.A.B., Hayamizu, K., Watanabe, M., 2006. J. Phys. Chem. B 110.
    150. Tsai, Y.-L., Chang, C.-C., Kang, C.-C., Chang, T.-C., 2007. Effect of different electronic properties on 9-aryl-substituted BMVC derivatives for new fluorescence probes. J. Lumin 127, 41-47.
    151. Turner, D.R., 1960. Electrolytic etching of semiconductors. In Gatos, 285-307.
    152. Usui, H., Matsui, H., Tanabe, N., Yanagida, S., 2004. Journal of Photochemistry and Photobiology A: Chemistry 164.
    153. Walden, P., 1914. Bull. Acad. Sci. St. Petersburg, 405-422.
    154. Wallace, G.G., Dastoor, P.C., Officer, D.L., Too, C.O., 2000. Chem. Innovation 30.
    155. Wang, P., Zakeeruddin, S.M., Moser, J.E., Nazeeruddin, M.K., Sekiguchi, T., Grätzel, M., 2003. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 402-407.
    156. Wang, Z.-S., Hara, K., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Arakawa, H., Sugihara, H., 2005. Photophysical and (Photo)electrochemical Properties of a Coumarin Dye. J. Phys. Chem. B 109, 3907-3914.
    157. Wienke, J., Krunks, M., Lenzmann, F., 2003. Inx(OH)ySz as recombination barrier in TiO2/inorganic absorber heterjunctions. Semicond. Sci. Technol. 18, 876-880.
    158. Wilkes, J.S., Levisky, J.A., Wilson, R.A., Hussey, C.L., 1982. Dialkylimidazolium chloroaluminate melts – A new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg.Chem. 21, 1263-1264.
    159. Wilkes, J.S., Zaworodtko, M.J., 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun. 13, 965-967.
    160. Wilkes, J.S., Zaworotko, M.J., 1992. Chem. Commun., 965-967.
    161. Williams, R., 1960. Becquerel photovoltaic effect in binary compounds. J. Chem. Phys. 32, 1505-1514.
    162. Wu, J.H., Hau, S.C., Lan, Z., Lin, J.M., Huang, M.L., Huang, Y.F., Fang, L.Q., Yin, S., Sato, T., 2007. Adv. Funct. Mat. 17, 2645-2652.
    163. Xia, Y., Luo, J., Deng, X., Li, X., Li, D., Zhu, X., Yang, W., Cao, Y., 2006. Novel random low-band-gap fluorene-based copolymers for deep red/near infrared light-emitting diodes and bulk heterojunction photovoltaic cells. Macromol. Chem. Phys. 207, 511-520.
    164. Xiang, N.J., Lee, T.H., Gong, M.L., Tong, K.L., So, S.K., Leung, L.M., 2006. Synthesis of 2-phenylquinoline-based ambipolar molecules containing multiple 1,3,4-oxadiazole spacer groups. Synth. Met. 156, 270-275.
    165. Yao, Q.-H., Shan, L., Li, F.-Y., Yin, D.-D., Huang, C.-H., 2003. New J. Chem. 27.
    166. Yeon, S.H., Kim, K.S., Choi, S., Lee, H., Kim, H.S., Kim, H., 2005. Electrochimica Acta 50.
    167. Yoon, K.R., Ko, S.-O.L., S.M.; Lee, H., 2007. Synthesis and characterization of carbazole derived nonlinear optical dyes. Dye Pigment 75, 567-573.
    168. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., 1995. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789-1791.
    169. Zakeeruddin, S.M., Gratzel, M., 2009. Adv. Funct. Mat. 19, 2187-2202.
    170. Zhang, H., Huo, C., Zhang, J., Zhang, P., Tian, W., Wang, Y., 2006. Efficient single-layer electroluminescent device based on a bipolar emitting boron-containing material. . Chem. Commun., 281-283.
    171. Zhaofu, F., Daibin, K., Dongbin, Z., Cedric, K., Shaik, M.Z., Grätzel, M., Paul, J.D., 2006. Inorg. Chem. 45.
    172. Zhou, Y.H., Peng, P., Han, L., Tian, W.J., 2007. Novel donor–acceptor molecules as donors for bulk heterojunction solar cells. . Synth. Met. 157, 502-507.
    173. Zhu, Y., Kulkarni, A.P., Jenekhe, S.A., 2005. Phenoxazine-based emissive donor−acceptor materials for efficient organic light-emitting diodes. . Chem. Mater. 17, 5225-5227.

    下載圖示 校內:2015-02-09公開
    校外:2015-02-09公開
    QR CODE