| 研究生: |
黃名毅 Huang, Ming-Yi |
|---|---|
| 論文名稱: |
白血球菸鹼醯胺腺嘌呤二核苷酸磷酸氧化酶的缺損加重塵螨誘發的肺纖維化 Defective NADPH oxidase 2 leads to more severe Dermatophagoides pteronyssinus-induced lung fibrosis |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 過敏性肺纖維化 、 塵蟎 、TH2/17免疫反應 、活性氧化物質 、白血球NADPH 氧化酶 |
| 外文關鍵詞: | Allergic lung fibrosis, Dermatophagoides pteronyssinus (Der p1), TH2/17 inflammatory response, Reactive oxygen species (ROS), NADPH oxidase 2(NOX2) |
| 相關次數: | 點閱:142 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺纖維化是一種不可逆轉的疾病,且在受損的部位會因為成纖維細胞的分化,產生胞外基質 (ECM) 的堆積造成組織硬化。目前發現過敏原造成的肺纖維化主要發生在重度的氣喘患者。與TH2 免疫反應為主的輕至中度氣喘患者相比,重度氣喘患者通常伴隨著TH2和TH17混和型的免疫反應,並藉由分泌促纖維化的細胞因子進一步調節成纖維細胞的分化。在纖維化過程中,成纖維細胞分化為肌成纖維細胞並在組織中分泌細胞外基質(ECM)造成組織硬化。先前的研究表明,白血球NADPH 氧化酶 (NOX2) 會產生活性氧化物質 (ROS),進而調節氣喘患者的肺部發炎反應。在我們之前的研究中,我們發現有缺陷的 NOX2 會透過增強第2 型先天淋巴細胞(ILC2)的活性,進而提升TH2和TH17兩者的免疫反應,造成過敏原塵蟎(Der p1)所誘導的氣喘症狀較為嚴重。然而,尚不清楚有缺陷的 NOX2 是否會同樣促進Der p1所誘導的肺纖維化。因此,透過之前的證據,我們假設有缺陷的 NOX2 會導致更嚴重的 Der p1 誘導的肺纖維化。在這項研究中,我們使用過敏原Der p1 刺激野生型 (WT) 和 NOX2 缺陷型 (Ncf1-/-) 小鼠。首先,我們發現 NOX2 缺陷型小鼠藉由檢測出動態順應性的降低,說明其有更嚴重的肺僵硬跡象。以及透過病理切片發現有較多的胞外基質,例如第I 型膠原蛋白,累積在細支氣管周圍。接著我們分析了成纖維細胞群,發現在沒有 NOX2 的情況下,刺激後小鼠的肺中肌成纖維細胞的比例有增加的趨勢。第三,我們檢測TH2/17免疫反應相關的促纖維化細胞因子。我們發現這些促纖維化細胞因子的表現在NOX2 缺陷型小鼠的肺中呈現減少的趨勢,目前推測可能的原因是在NOX2缺少的情況下,這些促纖維化細胞因子被過度消耗以激活第2和17型免疫反應的下游成員,間接促進 TGF-β 的表現造成纖維化加劇。此外,在FGF2方面,我們發現相較於野生型小鼠,NOX2 缺陷型小鼠的肺部組織在不受Der p1刺激的情況下,就已經有表現有較高的趨勢。這說明NOX2 缺陷型小鼠可能較容易發生肺纖維化。最後,從我們的結果看到與 WT 小鼠相比,NOX2 缺陷小鼠在Der p1刺激後,肺中的 ILC2 數量有增加的趨勢。因此,我們推論NOX2 的缺陷會加劇過敏原塵蟎所引起的ILC2 活化,調節免疫細胞因子,從而加速成纖維細胞的分化,造成更嚴重肺纖維化的病變,證明白血球NADPH 氧化酶 (NOX2) 在過敏性纖維化的的重要性。
Lung fibrosis is well-known as an irreversible process which is characterized by accumulation of extracellular matrix (ECM) produced by fibroblasts after tissue damage. In the fibrotic progression, fibroblasts differentiate into myofibroblasts and secrete the ECM, such as collagen, in the tissues. Lung fibrosis is a severe symptom in asthmatic patients. Comparing to TH2-predominant inflammation in mild-to-moderate asthmatic patients, severe asthmatic patients usually have the sign of TH2/17-mediated inflammation and further modulates fibroblast differentiation through pro-fibrotic cytokines. Previous studies indicated that phagocytic NADPH oxidase (NOX2) produces reactive oxygen species (ROS) which regulate lung inflammation in asthma. In our previous researches, we found that defective NOX2 elevated Dermatophagoides pteronyssinus (Der p1)-induced asthmatic inflammation induced by TH2/17-mediated phenotypes due to enhancing type 2 innate lymphoid cell (ILC2) activity. However, it’s not clear whether defective NOX2 promotes allergen-induced lung fibrosis. Therefore, we hypothesized that defective NOX2 leads to more severe Der p1-induced lungs fibrosis. In this study, we challenged wild-type (WT) and NOX2-deficient (Ncf1-/-) mice with intranasal instillation of Der p1. Firstly, we found that more severe lung stiffness as measured by dramatic decrease of dynamic compliance and more ECM (including type I collagen) accumulation around the bronchioles in NOX2-deficient mice after challenging with Der p1. Next, we analyzed fibroblasts populations and found that myofibroblast population increased significantly in NOX2-deficient mice after Der p1 stimulation. Thirdly, we detected the IL-33, IL-13, IL-1β, IL-17, TGF-β, and FGF2. Type 2 inflammatory cytokines tended to increase in the NOX2-deficient mice after challenging with Der p1. Also, higher basic level of FGF2 was observed in NOX2-deficient mice, which could be prone to the process of fibrosis. Finally, our data indicated that ILC2 population increased in fibrotic lungs of NOX2-deficient mice after Der p1 stimulation. Therefore, we concluded that Der p1-induced ILC2 and type 2 inflammatory cytokines may contribute to the more severe lung fibrosis in defective NOX2 mice, causing the severe fibrotic phenotypes. This study supports the importance of phagocyte NADPH in allergic fibrosis.
1. Craig, V.J., et al., Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 2015. 53(5): 585-600.
2. Akamatsu, T., et al., Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. Fibrogenesis Tissue Repair, 2013. 6(1): 15.
3. Glasser, S.W., et al., Mechanisms of Lung Fibrosis Resolution. Am J Pathol, 2016. 186(5): 1066-1077.
4. Raghu, G., et al., An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med, 2011. 183(6): 788-824.
5. Hough, K.P., et al., Airway Remodeling in Asthma. Front Med (Lausanne), 2020. 7: 191.
6. Takeda, Y., et al., Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adherence, 2014. 8: 361-370.
7. Guzy, R., Fibroblast Growth Factor Inhibitors in Lung Fibrosis: Friends or Foes? Am J Respir Cell Mol Biol, 2020. 63(3): 273-274.
8. Conte, E., et al., Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci, 2014. 58: 13-9.
9. Wollin, L., et al., Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther, 2014. 349(2): 209-220.
10. Murray, L.A., et al., Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am J Respir Cell Mol Biol, 2014. 50(5): 985-994.
11. Aceves, S.S. and D.H. Broide, Airway fibrosis and angiogenesis due to eosinophil trafficking in chronic asthma. Curr Mol Med, 2008. 8(5): 350-358.
12. Guerra, S., et al., The course of persistent airflow limitation in subjects with and without asthma. Respir Med, 2008. 102(10): 1473-1482.
13. Lee, J.H., et al., Risk factors associated with persistent airflow limitation in severe or difficult-to-treat asthma: insights from the TENOR study. Chest, 2007. 132(6): 1882-1889.
14. Reithofer, M. and B. Jahn-Schmid, Allergens with Protease Activity from House Dust Mites. Int J Mol Sci, 2017. 18(7).
15. Chapman, M.D. and T.A. Platts-Mills, Purification and characterization of the major allergen from Dermatophagoides pteronyssinus-antigen P1. J Immunol, 1980. 125(2): 587-592.
16. Hammad, H., et al., House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med, 2009. 15(4): 410-416.
17. Zhang, J.H., J. Chen, and C. Robinson, Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. International Journal of Molecular Sciences, 2018. 19(11).
18. Willart, M.A., et al., Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med, 2012. 209(8): 1505-1517.
19. Vroman, H., B. van den Blink, and M. Kool, Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology, 2015. 220(2): 254-261.
20. Porsbjerg, C.M., et al., Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. European Respiratory Journal, 2020. 56(5).
21. Kuruvilla, M.E., F.E. Lee, and G.B. Lee, Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol, 2019. 56(2): 219-233.
22. Liu, S., et al., Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol, 2018. 141(1): 257-268 e6.
23. Roan, F., K. Obata-Ninomiya, and S.F. Ziegler, Epithelial cell derived cytokines: more than just signaling the alarm. Journal of Clinical Investigation, 2019. 129(4): 1441-1451.
24. Gurram, R.K. and J. Zhu, Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol, 2019. 16(3): 225-235.
25. Gieseck, R.L., 3rd, M.S. Wilson, and T.A. Wynn, Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol, 2018. 18(1): 62-76.
26. Wang, Y.H., et al., A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med, 2010. 207(11): 2479-2491.
27. Chakir, J., et al., Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol, 2003. 111(6): 1293-1298.
28. Kim, H.Y., et al., Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med, 2014. 20(1): 54-61.
29. Dhaunsi, G.S., et al., NADPH oxidase in human lung fibroblasts. J Biomed Sci, 2004. 11(5): 617-622.
30. Bedard, K. and K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007. 87(1): 245-313.
31. Hultqvist, M., et al., Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A, 2004. 101(34): 12646-12651.
32. Ursini, F., M. Maiorino, and H.J. Forman, Redox homeostasis: The Golden Mean of healthy living. Redox Biol, 2016. 8: 205-215.
33. Sies, H. and D.P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol, 2020. 21(7): 363-383.
34. Chan, T.Y., et al., Increased ILC3s associated with higher levels of IL-1beta aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol, 2019. 49(11): 2063-2073.
35. Noack, D., et al., Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood, 2001. 97(1): 305-311.
36. Singel, K.L. and B.H. Segal, NOX2-dependent regulation of inflammation. Clin Sci (Lond), 2016. 130(7): 479-490.
37. Won, H.Y., et al., Enhancement of Allergen-induced Airway Inflammation by NOX2 Deficiency. Immune Netw, 2011. 11(3): 169-174.
38. Banerjee, E.R. and W.R. Henderson, Jr., Role of T cells in a gp91phox knockout murine model of acute allergic asthma. Allergy Asthma Clin Immunol, 2013. 9(1): 6.
39. Zou, Y.M., et al., Upregulation of Gelatinases and Epithelial-Mesenchymal Transition in Small Airway Remodeling Associated with Chronic Exposure to Wood Smoke. Plos One, 2014. 9(5).
40. Laucho-Contreras, M.E., et al., Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice. J Vis Exp, 2015(95): 52236.
41. Vannella, K.M., et al., Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Science Translational Medicine, 2016. 8(337).
42. Sutcliffe, A., et al., Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med, 2012. 185(3): 267-274.
43. Jiang, F., et al., NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox Biol, 2014. 2: 267-272.
44. Manoury, B., et al., The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res, 2005. 6: 11.
45. Habibovic, A., et al., DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight, 2016. 1(18): e88811.
46. Gonzalez, A., C.Y. Hung, and G.T. Cole, Absence of phagocyte NADPH oxidase 2 leads to severe inflammatory response in lungs of mice infected with Coccidioides. Microb Pathog, 2011. 51(6): 432-441.
47. Yao, H., et al., Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice. Am J Pathol, 2008. 172(5): 1222-1237.
48. Zmijewski, J.W., et al., Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am J Respir Crit Care Med, 2009. 179(8): 694-704.
49. Kelada, S.N., et al., Strain-dependent genomic factors affect allergen-induced airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol, 2011. 45(4): 817-824.
50. Chambers, E.S., et al., Distinct endotypes of steroid-resistant asthma characterized by IL-17A(high) and IFN-gamma(high) immunophenotypes: Potential benefits of calcitriol. J Allergy Clin Immunol, 2015. 136(3): 628-637 e4.
51. Wei, Q., et al., Relationship between Th17-mediated immunity and airway inflammation in childhood neutrophilic asthma. Allergy Asthma Clin Immunol, 2021. 17(1): 4.
52. Li, D., et al., IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol, 2014. 134(6): 1422-1432 e11.
53. Flamar, A.L., et al., Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity. Immunity, 2020. 52(4): 606-619 e6.
54. van der Ploeg, E.K., et al., Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol, 2021. 6(55).
55. van der Vliet, A., Y.M.W. Janssen-Heininger, and V. Anathy, Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med, 2018. 63: 59-69.
56. Han, W., et al., NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-kappaB activity. J Immunol, 2013. 190(9): 4786-4794.
57. Gorlach, A., et al., Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol, 2015. 6: 372-385.
校內:2026-09-03公開