| 研究生: |
陳俊吉 Chen, Jung-Ji |
|---|---|
| 論文名稱: |
利用回應曲面法探討添加胺基酸對肌酸酵
素生產之影響 Effects of adding amino acids on creatinase production using response surface method |
| 指導教授: |
蔡少偉
Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 胺基酸 、肌酸酵素 、回應曲面法 |
| 外文關鍵詞: | creatinase, amino acids, response sutface method |
| 相關次數: | 點閱:114 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以基因重組大腸桿菌E.coli JM109 生產肌酸酵素,此菌所殖入之載體PQE-51-PSCR01 內包含Pseudomonas putida NTU-8的肌酸酵素基因以及於其前端插入一段來自於Aeromonas hydrophila幾丁質分解酵素的信號序列,故所表現的胞內酵素可被分泌至細胞間質。將此基因重組菌於每升添加3.0 克葡萄糖之Luria-Bertani 培養液進行搖瓶培養,並在適當時間以IPTG 誘導,發現有促進菌體生長的現象。推測可能原因為誘導後,加速某些特定胺基酸之利用效率所致。於是再於R 培養液中添加不同胺基酸進行培養,結果發現添加蘇胺酸、精胺酸、組胺酸或蛋胺酸對於菌體的生長和肌酸酵素的生產皆有幫助。因此再於R 培養液中添加蘇胺酸、精胺酸及蛋胺酸三種胺基酸,並以回應曲面配合中心混成法尋找生產肌酸酵素之最佳條件,其結果似乎可觀察到高蘇胺酸濃度及低蛋胺酸濃度低較有利於肌酸酵素的生產
The ceatinase was produced from the gene of Pseudomonas putida NTU-8 expressed by a recombinant Escherichia coli JM109. This expression system was constructed by using a pQE-51-pSCR01 vector fused with a chitinase signal peptide, with which the gene product can excrete to the periplasmic space . Cell growth enchancement was found by incubating the recombinant E. coli in Luria-Bertani medium when an inducer of isopropyl-β-D-thiogalactopyranoside (IPTG) was added at an appropriate time. Such behavior might be attributed to the activated usage of certain amino acids. Similar behaviors of increasing cellgrowth and creatinase activing were obtained when adding threonine 、arginine 、histidine and methionine in the R medium. Therefore a Response Surface Method (RSM) with Central Composite Design (CCD) where threonine 、arginine and methionine were as the designed valuables were employed to find the optimal condition for creatinase production. The results indicated that the higher of threonine concentration and the lower of methionine concentration were, the better was the producivity for creatinase
Albert, L. L, David, L. N, and Michael M. C., “Principles of Biochemistry,”
by Worth Publishers, Inc. 523 (1993).
Ames, G. F. L., Prody, C. and Kustu, S., “Simple, rapid, and quantitative
release of periplasmic proteins by chloroform,” J. Bacteril., 160,
Andersson, L., Yang, S., Neubauer, P., and Enfors, S. O., “Impact of plasmid
presence and induction on cellular responses in fed batch cultures of
Escherichia coli,” J. Biotechnol., 46, 255-263 (1996).
Aristidou, A. A., Yu, P., and San, K. Y., “Effects of glycine supplement on
protein production and release in recombinant Escherichia coli,” Biotech.
Bradford, M. M., “A rapid and sensitive method for the binding of protein dye
principle. The utilizing quantity of protein quantitation of microgram,”
Anal. Biochem. 72, 248-254 (1976).
Brawner, M. E., “Advances in heterologous gene expression by
streptomyces,” Curr. Opin. Biotechnol., 5, 475-481 (1994).
Chang, M. C., Chang, C. C., and Chang, J. C., “Cloning of a Creatinase Gene
from Pseudomonas putida in Escherichia coli by Using an Indicator
Plate,” Appl. Environ. Microbiol., 58, 3437-3440 (1992).
Engler, C. R., and Robinson, C, W., “Effect of organism type and growth
conditions on cell disruption by impingement,” Biotechnol. Lett., 3,
88 (1981).
Fornwald, J. A., Donovan, M. J., Gerber, B., Keller, J., Taylor, D. P., Arcuri, E.J., and Brawner, M. E., “Soluble forms of the human T cell receptor CD4
are efficiently expressed by streptomyce lividans,” Biotech., 11,
1031-1036 (1993).
Garcia, F.A.P., “Cell wall disruption,” In Kenndy, J. F. & Calral, JMS (end)
Recovery Processes for Biological Material, Jone Wiley & Sons, New
York, 47-66 (1993).
Haas-Lauterbach, S., Scharf, M., Sprunkel, B., Neeb, M., Koller, K. P., and
Engels, J. W., “High Yield Fermentation and purification of tendamistat
disulphide analogues secreted by streptomyce lividans,” Appl. Microbiol.
Biotechnol., 38, 719-727 (1993).
Hoeffken, H. W., Knof, S. H., Bartlett, P. A., Huber, R., Moellering, H., and
Schumacher, G., “Crystal structure determination, refinement and
molecular Model of creatine amidinohydrolase from Pseudomonas
putida,” J. Mol. Biol., 204, 417-433 (1988).
Hong, M. C., Chang, J. C., Wu, M. L., and Chang, M. C., “Expression and
export of Pseudomonas putida NTU-8 ceratinase by Escherichia coli
using the chitinase signal sequence of Aeromonas hydrophila,” Biochem.
Gene., 36, 407-415 (1998).
Woo,K-L. ,Ahan Y-K. , “Determination of protein amion acid as
benzylthiocarbanyl derivatives compared with phenylthiocarbamyl
derivatives by reversed-phase high-performance liquid chromatography,
ultraviolet detection and precolumn derivatization” Journal of Chromat.
A, 740, 41-50 (1996).
Kaplan, A., and Naugler, D., “Creatinine hydrolase and creatine
amidinohydrolase. I. Presence in cell-free extracts of Arthrobacter
ureafaciens,” Mol. Cell. Biochem., 3, 9-15 (1974).
Kim, S. S., Kim, E. K., and Rhee, J. S., “Effects of growth rate on the
production of Pseudomonas fluorescens lipase during the fed-batch
cultivation of Escherichia coli,” Biotechnol. Prog., 12, 718-722 (1996).
Klibanov, A. M., and Zaks, A., “Enzymatic catalysis in organic media at 100
℃,” Science, 224, 1249-1251 (1984).
Koyama, Y., Kitao, S., Yamamoto-Otake, H., Susuki, M., and Nakano, E.,
“Cloning and expression of the creatinase gene from Flavobacterium sp.
U-188 in Escherichia coli,” Agric. Biol. Chem., 54, 1453-1457 (1990).
Matsuda, Y., Wakamatsu, N., Inouye, Y., Uede, S., Hashimoto, Y., Asano, K.,
and Nakamura, S., “Purification and characterization of creatine
amidinohydrolase of Alcaligenes Origin,” Chem. Pharm. Bull., 34,
2155-2160 (1986).
Neu, H. C. and Heppel, L. A., “The relase of enzymes from Escherichia coli
by osmotic shock and during the fermation of spheroplasts,”, J. Biol.
Chem. 240, 3685-3692 (1965).
Pero, J., and Sloma, A., “Proteaes ”, In A. L. Sonenshein, J. A. Hoch, and R.
Losick (eds.), Bacillus subtilis and Other Gram-positive Bacteria,”
American Society of Microbiology, Washington, DC, 939-952 (1993).
Rowland, S. S., Zulty, J. J., Sathyamoorthy, M., Pogell, B. M., and Speeddie,
M. K., “The effect of signal sequences on the efficiency of secretion of a
heterologous phosphotriesterase by Streptomyce lividans,” Microbiol.
Biotechnol., 38, 94-100 (1992).
Schutle, H. and Kula, M. R., “Pilot and process-scale techniques for cell
disruption,” Biotechnol. Appl. Biochem., 12, 599-620 (1990).
Smith, G. M., “The nature of enzymes,” Biotech., 9, 7-72 (1995).
Talmadge, K., and Gilbert, W., “Cellular location affects protein stability in
Escherichia coli,” Proc. Natl. Sci. USA, 79, 1830 (1982).
Walsh, G., and Headon, D., “Protein biotechnology,” John Wiley & Sons,
New York, 302-336 (1994).
Wang, D. C., Cooney, C., Demain, A. L., Dunnill, P., Humphrey, A. E., and
Lilly, M. D., “Fermentation and Enzyme Technology,” 8 (1979a).
Wang, D. C., Cooney, C., Demain, A. L., Dunnill, P., Humphrey, A. E., and
Lilly, M. D., “Fermentation and Enzyme Technology”, 4 (1979b).
White, J. S., and White, D. C., “Sourc Book of Enzymes,” 650 (1997).
王憲忠,菌體外分泌蛋白質-幾丁分解酶之基因解析,國立成功大學生物化學研究所碩士論文 (1993).
田蔚城,生物技術的發展與應用,九州圖書文物有限公司 (1997).
徐維富,以基因轉殖菌株生產creatinase :醱酵、分離純化及酵素物性與化性探討,國立成功大學化學工程研究所碩士論文 (2001).
蔣欣妤,探討培養基組成與IPTG 誘導時間對基因轉殖菌與肌酸酵素生產之影響,國立成功大學化學工程研究所碩士論文 (2002).
呂金河,變異數分析,三民書局 (1993).
汪仁官、陳榮昭,實驗設計與分析,第三版,中國統計出版社 (1991).