| 研究生: |
陳志欣 Chen, Chih-Hsin |
|---|---|
| 論文名稱: |
應用質量守恆邊界法模擬波浪於不規則近岸結構物上之溯升與越波 Simulations of Wave Run-up and Overtopping at Irregular Coastal Structures Using Mass-Conserved Boundary Method |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 質量守恆邊界法 、等位函數法 、質點等位函數法 、溯升 、越波 |
| 外文關鍵詞: | mass-conserved boundary method, level set method, particle level set method, run-up, overtopping |
| 相關次數: | 點閱:133 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文發展數值模式求解二維非穩態雷諾平均方程式 (RANS)及紊流模式( model),以模擬不同波浪入射至真實底床上的海堤後,在海堤上溯升及越波的現象。本文應用等位函數法 (Level Set Method)及質點等位函數法(Particle Level Set Method)求出波浪溯升及越波過程中,複雜的自由液面變化及其波形演變。此外,為了能夠在卡氏座標網格下滿足不規則結構物上的邊界條件,本文提出了新的邊界處理方法,稱為質量守恆邊界法(Mass-Conserved Boundary Method,簡稱MCBM),讓數值模式能在卡氏座標網格下模擬波浪與不規則結構物之交互作用。有別於過去研究中以切割網格法(Cut-cell method)計算質量通率所造成的不便,MCBM乃是採用虛擬網格法(Ghost Fluid Method)分別求算平行及垂直固液交界面的邊界流速,以同時滿足固液邊界網格中連續方程式與非穿透及無滑移的固體邊界條件。本模式藉由等位函數描述固體邊界的優勢,可容易且正確地獲得固液交界面附近的邊界流速。
為了確保數值模式的準確性,本文利用多項前人實驗或理論的研究成果逐一驗證本模式的計算結果,其中包括缺口圓盤問題 (Zalesak’s problem)、拉穴流問題 (cavity flow problem)及均勻流通過圓柱等。經由數值模式模擬波浪於不規則結構物上的溯升及越波,可觀察出數值結果與實驗結果在自由液面變化、流體速度及越波量的比對上相當一致。
在驗證數值模式的準確性後,本文進行兩項研究。第一,為了瞭解孤立波溯升時的流場特性,數值模式模擬不同孤立波入射至不同坡度的斜坡時自由液面的演變,並探討流場、波壓及底床剪應力等物理現象。由斜坡堤趾前方底床邊界層內的流場可見,當孤立波溯升速度減緩時,邊界層外緣的流體會朝向岸方向流動,而邊界層內的流體則朝離岸方向前進。同樣的現象也會發生在斜坡面上,此靠近底床的逆向流稱為水下逆流 (undertow)。此外,本文亦同時探討在溯升及溯降期間,孤立波在斜坡附近所造成的波壓及底床剪應力。
第二,為了預測颱風季節期間風浪在實際海堤附近溯升與越波的情形,本文模擬孤立波入射至宜蘭、花蓮及台東等地區的真實海堤。文中先利用統計方法求得該地區於五種不同重現期時的預測暴潮位及預測最大波高作為入射波條件。數值模擬結果顯示,孤立波於實際地形及海堤上前進時,會產生碎波、淺化、溯升、溯降及越波等現象。為了將結構物後方的溢淹結果量化,本文亦探討在不同重現期及相異地區下的越波量時序列分佈。本模式可應用於預測各種波浪所造成的越波量,作為風險評估的參考。
In this study, numerical schemes were developed to solve the unsteady, two-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the turbulence model ( model) for simulating run-up and overtopping of waves at real seawalls. The level set method and the particle level set method were adopted to capture the complex free surface and its evolution involved in the run-up and overtopping processes. A novel Cartesian grid method, called the Mass-Conserved Boundary Method (MCBM), was proposed to satisfy the boundary conditions at the irregular boundaries under the Cartesian grid system. This will enable the simulation of wave and irregular structure interaction easily.
To avoid the complexity of the cut-cell method, the ghost fluid method was employed in MCBM to determine the boundary velocities in the tangential and normal directions of the fluid-solid interface. Thus, the impermeable, no-slip boundary conditions are enforced at the fluid-solid interface, and the continuity equations are guaranteed at the cells containing the immersed boundary. By taking the advantage of the level-set representation of the solid boundary, the boundary velocities near the fluid-solid interface can be evaluated easily and precisely.
To ensure the accuracy of the numerical model, several tests have been made and numerical solutions have been compared with either analytical solutions or experimental data. The tested cases include the Zalesak’s problem, cavity flow problem, and a uniform flow past through a circular cylinder. Furthermore, the free-surface profiles and the flow velocities on a sloping beach and the discharge of overtopped flow at a seawall obtained by the present numerical model compared favorably with the experimental data.
After having verified the accuracy of the present numerical model, two major topics were investigated in this study. First, the numerical model was applied to simulate the flow field on a sloping beach for various incident solitary waves. The free-surface evolution, the flow fields, the wave pressure on the sloping beach and the bed shear stress were discussed to reveal the characteristics of the wave and flow fields. After examining the boundary layer flows in front of the beach toe, we found that the fluid particles outside the boundary layer move in the direction of wave propagation, while the fluid particles inside the boundary layer move in the reversed direction as the wave run-up decelerates. This type of reverse flow occurs also near the bottom of the sloping beach and was usually referred to as undertow. The total pressure on the slope and the bed shear stress during the run-up and run-down phases were also calculated.
Second, to provide information on the wave run-up and overtopping at seawalls during the typhoon period, this model was applied to determine the surface evolution as a solitary wave attacks real seawalls at Yilan, Hualien and Taitung of eastern Taiwan. The storm surge and the maximum wave height were obtained from statistical analysis based on five return periods. These data were adopted as the still water depth and the local incident waves in the numerical computation. Wave breaking, shoaling, run-up, run-down and overtopping were all observed in the numerical results. To estimate the overflow rate, time series of the overtopping discharge were analyzed under various topography and return periods. The wave model has been demonstrated to be a promising tool for forecasting the wave overtopping. This information can be used to appraise the risk of coastal structures from wavy damage.
1. Adalsteinsson, D. and Sethian, J. A. (1999). The fast construction of extension velocities in level set methods. Journal of Computational Physics, Vol. 148(1), pp. 2-22.
2. Avgeris, I., Karambas, T. and Prinos, P. (2006). Boussinesq modeling of wave run-up and overtopping. Proceedings of 7th International Conference on HydroScience and Engineering, Philadelphia, USA.
3. Balaras, E. (2004). Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers and Fluids, Vol. 33(3), pp. 375-404.
4. Beyer, R. P. and Leveque, R. J. (1992). Analysis of a one-dimensional model for the immersed boundary method. SIAM Journal on Numerical Analysis, Vol. 29(2), pp. 332-364.
5. Carrier, G. F. and Greenspan, H. P. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics Digital Archive, Vol. 4(01), pp. 97-109.
6. Carrier, G. F., Wu, T. T. and Yeh, H. (2003). Tsunami run-up and draw-down on a plane beach. Journal of Fluid Mechanics, Vol. 475(1), pp. 79-99.
7. Chen, C.-J. and Chen, H.-C. (1984). Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. Journal of Computational Physics, Vol. 53(2), pp. 209-226.
8. Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. II: 2D. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126(1), pp. 48-56.
9. Dodd, N. (1998). Numerical model of wave run-up, overtopping, and regeneration. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 124(2), pp. 73-81.
10. Dong, Z. and Zhan, J.-M. (2009). Numerical modeling of wave evolution and runup in shallow water. Journal of Hydrodynamics, Ser. B, Vol. 21(6), pp. 731-738.
11. Enright, D., Fedkiw, R., Ferziger, J. and Mitchell, I. (2002). A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, Vol. 183(1), pp. 83-116.
12. Fadlun, E. A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, Vol. 161(1), pp. 35-60.
13. Fedkiw, R. P., Aslam, T. and Xu, S. (1999). The ghost fluid method for deflagration and detonation discontinuities. Journal of Computational Physics, Vol. 154(2), pp. 393-427.
14. Fedkiw, R. P. (2002). Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. Journal of Computational Physics, Vol. 175(1), pp. 200-224.
15. Franco, L., de Gerloni, M. and van der Meer, J. (1994). Wave overtopping on vertical and composite breakwaters. Proceedings of 24th International Conference on Coastal Engineering, ASCE, pp. 1030-1045.
16. Fuhrman, D. R. and Madsen, P. A. (2009). Tsunami generation, propagation, and run-up with a high-order Boussinesq model. Coastal Engineering, Vol. 56(7), pp. 747-758.
17. Ghia, U., Ghia, K. N. and Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, Vol. 48(3), pp. 387-411.
18. Goda, Y. (1970). Estimation of the rate of irregular wave overtopping of seawalls. Report of the Port and Harbour Research Institute, Vol. 9(4), pp. 3-41.
19. Goto, C. and Shuto, N. (1978). Numerical simulation of tsunami run-up. Coastal Engineering in Japan, Vol. 21(1), pp. 13-20.
20. Goto, C. and Shuto, N. (1979). Two-dimensional numerical computation of nonlinear tsunami run-ups. Proceedings of 26th Conference on Coastal Engineering, JSCE, Japanese.
21. Gotoh, H., Ikari, H., Memita, T. and Sakai, T. (2005). Lagrangian particle method for simulation fo wave overtopping on a vertical seawall. Coastal Engineering Journal, Vol. 47, pp.
22. Grantham, K. (1953). A model study of wave run-up on sloping structures. University of California, Institute of Engineering Research.
23. Grilli, S. T., Subramanya, R., Svendsen, I. A. and Veeramony, J. (1994). Shoaling of solitary waves on plane beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 120(6), pp. 609-628.
24. Grilli, S. T., Svendsen, I. A. and Subramanya, R. (1997). Breaking criterion and characteristics for solitary waves on slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 123(3), pp. 102-112.
25. Grimshaw, R. (1970). The solitary wave in water of variable depth. Journal of Fluid Mechanics, Vol. 42(03), pp. 639-656.
26. Hall, J. and Watts, J. (1953). Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Beach Erosion Board, US Army Corps of Engineer, Tech. Memo, Vol. 33, pp. 14.
27. Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of fluids, Vol. 8(12), pp. 2182.
28. Hedges, T. and Reis, M. (1998). Random wave overtopping of simple sea walls: a new regression model. Proceedings of the Institution of Civil Engineers. Water, Maritime and Energy, Vol. 130(1), pp. 0001-0010.
29. Hibberd, S. and Peregrine, D. H. (1979). Surf and run-up on a beach: a uniform bore. Journal of Fluid Mechanics, Vol. 95(02), pp. 323-345.
30. Hieu, P. D. and Tanimoto, K. (2006). Verification of a VOF-based two-phase flow model for wave breaking and wave-structure interactions. Ocean Engineering, Vol. 33(11-12), pp. 1565-1588.
31. Hsiao, S.-C., Hsu, T.-W., Lin, T.-C. and Chang, Y.-H. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, Vol. 55(12), pp. 975-988.
32. Hsiao, S.-C. and Lin, T.-C. (2010). Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling. Coastal Engineering, Vol. 57(1), pp. 1-18.
33. Hu, K., Mingham, C. G. and Causon, D. M. (2000). Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations. Coastal Engineering, Vol. 41(4), pp. 433-465.
34. Hubbard, M. E. and Dodd, N. (2002). A 2D numerical model of wave run-up and overtopping. Coastal Engineering, Vol. 47(1), pp. 1-26.
35. Hughes, S. A. (2004). Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter. Coastal Engineering, Vol. 51(11-12), pp. 1085-1104.
36. Hunt, I. (1959). Design of seawalls and breakwaters. Journal of Waterways and Harbours Division, Vol. 85, pp. 123-152.
37. Jensen, A., Pedersen, G. K. and Wood, D. J. (2003). An experimental study of wave run-up at a steep beach. Journal of Fluid Mechanics, Vol. 486(1), pp. 161-188.
38. Jiang, G.-S. and Shu, C.-W. (1995). Efficient implementation of weighted ENO schemes. (Technical Report): Computer Applications in Science and Engineering (ICASE).
39. Johansen, H. and Colella, P. (1998). A Cartesian grid embedded boundary method for Poisson's equation on irregular domains. Journal of Computational Physics, Vol. 147(1), pp. 60-85.
40. Kânoglu, U. and Synolakis, C. E. (1998). Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, Vol. 374(1), pp. 1-28.
41. Kânoglu, U. (2004). Nonlinear evolution and runup-rundown of long waves over a sloping beach. Journal of Fluid Mechanics, Vol. 513(1), pp. 363-372.
42. Kennedy, A. B., Chen, Q., Kirby, J. T. and Dalrymple, R. A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 126(1), pp. 39-47.
43. Kikkawa, H., Shi-igai, H. and Kono, T. (1968). Fundamental study of wave overtopping on levees. Coastal Eng. in Japan, Vol. 11, pp. 107-115.
44. Kim, J., Kim, D. and Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics, Vol. 171(1), pp. 132-150.
45. Kim, S. K., Liu, P. L. F. and Liggett, J. A. (1983). Boundary integral equation solutions for solitary wave generation, propagation and run-up. Coastal Engineering, Vol. 7(4), pp. 299-317.
46. Kishi, T. and Saeki, H. (1966). The shoaling, breaking and runup of the solitary wave on impermeable rough slopes. Proceedings of Tenth Conference on Coastal Engineering, Tokyo, Japan, pp. 322-348.
47. Kobayashi, N. and Karjadi, E. A. (1994). Surf-similarity parameter for breaking solitary-wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 120(6), pp. 645-650.
48. Kobayashi, N. and Wurjanto, A. (1989). Wave overtopping on coastal structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 115(2), pp. 235-251.
49. Korycansky, D. G. and Lynett, P. J. (2007). Run-up from impact tsunami. Geophysical Journal International, Vol. 170(3), pp. 1076-1088.
50. Lai, M.-C. and Peskin, C. S. (2000). An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics, Vol. 160(2), pp. 705-719.
51. Lara, J. L., Losada, I. J. and Guanche, R. (2008). Wave interaction with low-mound breakwaters using a RANS model. Ocean Engineering, Vol. 35(13), pp. 1388-1400.
52. Launder, B. and Sharma, B. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters Heat Mass Transfer, Vol. 1, pp. 131-137.
53. Launder, B. E. and Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, Vol. 3(2), pp. 269-289.
54. Li, Y. and Raichlen, F. (2001). Solitary wave runup on plane slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 127(1), pp. 33-44.
55. Li, Y. and Raichlen, F. (2002). Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, Vol. 456(1), pp. 295-318.
56. Li, Y. and Raichlen, F. (2003). Energy balance model for breaking solitary wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 129(2), pp. 47-59.
57. Li, T., Troch, P. and De Rouck, J. (2004). Wave overtopping over a sea dike. Journal of Computational Physics, Vol. 198(2), pp. 686-726.
58. Lin, P. and Liu, P. (1998a). A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, Vol. 359, pp. 239-264.
59. Lin, P. and Liu, P. L. F. (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., Vol. 103(C8), pp. 15677-15694.
60. Lin, P., Chang, K.-A. and Liu, P. L.-F. (1999). Runup and rundown of solitary waves on sloping beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125(5), pp. 247-255.
61. Losada, I. J., Lara, J. L., Guanche, R. and Gonzalez-Ondina, J. M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol. 55(1), pp. 47-62.
62. Lu, Y.-j., Liu, H., Wu, W. and Zhang, J.-s. (2007). Numerical simulation of two-dimensional overtopping against seawalls armored with artificial units in regular waves. Journal of Hydrodynamics, Ser. B, Vol. 19(3), pp. 322-329.
63. Lynett, P. J., Wu, T.-R. and Liu, P. L. F. (2002). Modeling wave runup with depth-integrated equations. Coastal Engineering, Vol. 46(2), pp. 89-107.
64. Matteo, A. and Brocchini, M. (2008). Maximum run-up, breaking conditions and dynamical forces in the swash zone: a boundary value approach. Coastal Engineering, Vol. 55(9), pp. 732-740.
65. McCorquodale, P., Colella, P. and Johansen, H. (2001). A Cartesian grid embedded boundary method for the heat equation on irregular domains. Journal of Computational Physics, Vol. 173(2), pp. 620-635.
66. Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. Annual Review of Fluid Mechanics, Vol. 37(1), pp. 239-261.
67. Mohd-Yusof, J. (1997). Combined immersed-boundary/B-spline methods for simulations of ow in complex geometries. Annual Research Briefs, NASA Ames Research Center, Stanford University Center of Turbulence Research: Stanford.
68. Nadaoka, K., Hino, M. and Koyano, Y. (1989). Structure of the turbulent flow field under breaking waves in the surf zone. Journal of Fluid Mechanics, Vol. 204(1), pp. 359-387.
69. Nwogu, O. (1993). Alternative form of boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 119(6), pp. 618-638.
70. Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, Vol. 79(1), pp. 12-49.
71. Owen, M. (1980). Design of seawalls allowing for wave overtopping. Report EX, Vol. 924, pp.
72. Park, J.-C., Lee, B.-H. and Hong, K.-Y. (2008). Wave overtopping simulations over coastal structures. Journal of Mechanical Science and Technology, Vol. 22(6), pp. 1222-1229.
73. Park, S. P., Kim, E. Y. and Kim, D. I. (1998). Systems for production of calves from Hanwoo (Korean Native Cattle) IVM/IVF/IVC blastocyst I. Hanwoo IVM/IVF/IVC blastocyst cryopreserved by vitrification. Reproductive & developmental biology, Vol. 22(4), pp. 349-357.
74. Pedersen, G. and Gjevik, B. (1983). Run-up of solitary waves. Journal of Fluid Mechanics, Vol. 135(-1), pp. 283-299.
75. Pelinovsky, E. N. and Mazova, R. K. (1992). Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natural Hazards, Vol. 6(3), pp. 227-249.
76. Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999). A PDE-Based fast local level set method. Journal of Computational Physics, Vol. 155(2), pp. 410-438.
77. Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, Vol. 27(04), pp. 815-827.
78. Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal of Computational Physics, Vol. 10(2), pp. 252-271.
79. Pullen, T., Allsop, W., Bruce, T. and Pearson, J. (2009). Field and laboratory measurements of mean overtopping discharges and spatial distributions at vertical seawalls. Coastal Engineering, Vol. 56(2), pp. 121-140.
80. Saiki, E. M. and Biringen, S. (1996). Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, Vol. 123(2), pp. 450-465.
81. Sakakiyama, T. and Liu, P. L. F. (2001). Laboratory experiments for wave motions and turbulence flows in front of a breakwater. Coastal Engineering, Vol. 44(2), pp. 117-139.
82. Saville, T. J. R. (1955). Laboratory data on wave run-up and overtopping on shore structures. Technical Memorandum No.64, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, DC.
83. Shao, S. (2006). Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. International Journal for Numerical Methods in Fluids, Vol. 50(5), pp. 597-621.
84. Shao, S., Ji, C., Graham, D. I., Reeve, D. E., James, P. W. and Chadwick, A. J. (2006). Simulation of wave overtopping by an incompressible SPH model. Coastal Engineering, Vol. 53(9), pp. 723-735.
85. Shu, C., Liu, N. and Chew, Y. T. (2007). A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder. Journal of Computational Physics, Vol. 226(2), pp. 1607-1622.
86. Shuto, N. (1972). Standing waves in front of a sloping dike. Coastal Engineering in Japan, Vol. 15, pp. 13-23.
87. Stansby, P. K. and Feng, T. (2004). Surf zone wave overtopping a trapezoidal structure: 1-D modelling and PIV comparison. Coastal Engineering, Vol. 51(5-6), pp. 483-500.
88. Synolakis, C. E. (1986). The runup of long waves. Ph.D. Thesis, California Institute of Technology, Pasadena, California.
89. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics Digital Archive, Vol. 185(-1), pp. 523-545.
90. Synolakis, C. E. (1991). Green's law and the evolution of solitary waves. Physics of Fluids A: Fluid Dynamics, Vol. 3, pp. 490.
91. Synolakis, C. E. and Skjelbreia, J. E. (1993). Evolution of maximum amplitude of solitary waves on plane beaches. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 119(3), pp. 323-342.
92. Tadepalli, S. and Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 445(1923), pp. 99-112.
93. Takada, A. (1970). On relations among wave run-up, overtopping and reflection. Proceedings.
94. Thompson, J. F., Warsi, Z. U. A. and Wayne Mastin, C. (1982). Boundary-fitted coordinate systems for numerical solution of partial differential equations--A review. Journal of Computational Physics, Vol. 47(1), pp. 1-108.
95. Ting, F. C. K. and Kirby, J. T. (1994). Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering, Vol. 24(1-2), pp. 51-80.
96. Titov, V. V. and Synolakis, C. E. (1995). Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 121(6), pp. 308-316.
97. Titov, V. V. and Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 124(4), pp. 157-171.
98. Tominaga, M. and Sakuma, N. (1970). Wave overtopping on coastal dikes. Proceedings of Proc. Japanese Conf. Coastal Eng., Japanese.
99. Tseng, Y.-H. and Ferziger, J. H. (2003). A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, Vol. 192(2), pp. 593-623.
100. Udaykumar, H. S., Mittal, R., Rampunggoon, P. and Khanna, A. (2001). A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. Journal of Computational Physics, Vol. 174(1), pp. 345-380.
101. Umeyama, M. (1993). Wave overtopping on vertical boundary and water-surface displacement. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 119(3), pp. 243-260.
102. van der Meer, J. and Janssen, J. (1994). Wave run-up and wave overtopping at dikes and revetments. Vol., pp. 277A-277A(1).
103. Wei, G., Kirby, J. T., Grilli, S. T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, Vol. 294(1), pp. 71-92.
104. Wiegel, R. L. (1960). A presentation of cnoidal wave theory for practical application. Journal of Fluid Mechanics, Vol. 7(02), pp. 273-286.
105. Wood, D. J., Pedersen, G. K. and Jensen, A. (2003). Modelling of run up of steep non-breaking waves. Ocean Engineering, Vol. 30(5), pp. 625-644.
106. Ye, T., Mittal, R., Udaykumar, H. S. and Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics, Vol. 156(2), pp. 209-240.
107. Yeh, H. H. (1991). Tsunami bore runup. Natural Hazards, Vol. 4(2), pp. 209-220.
108. Zelt, J. A. and Raichlen, F. (1990). A Lagrangian model for wave-induced harbour oscillations. Journal of Fluid Mechanics Digital Archive, Vol. 213(1), pp. 203-225.
109. Zelt, J. A. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, Vol. 15, pp. 205-246.
110. 蕭士俊、許泰文、黃清哲 (2010). 東部海岸海岸溢淹潛勢圖資製作之研究。 經濟部水利署