| 研究生: |
洪琪祐 Hong, Chi-yew |
|---|---|
| 論文名稱: |
經由熱蒸鍍法以銀及銅催化Ge奈米結構的生長 Ag- and Cu-catalyzed growth of Ge nanostructures by the thermal evaporation method |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | Ge 奈米結構 、銀催化 |
| 外文關鍵詞: | Ag-catalyzed, Ge nanostructures |
| 相關次數: | 點閱:47 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在950˚C氬氣環境中熱蒸發 Ge 粉末,銀催化生長直的 Ge 奈米線,鋸齒狀的 Ge 奈米帶與六邊形的 Ge 奈米塔。在550-600˚C生長 Ge奈米線與 Ge 奈米帶係經由VSS機制以 top-growth 模式生長而在700-750˚C 生長 Ge 奈米塔係經由 VLS 機制以 bottom-growth 模式生長。這些結果顯示銀催化生長 Ge 奈米結構的生長模式與溫度相關。同時也討論Ge 奈米結構的生長機制。Ge奈米線、Ge 奈米帶與Ge奈米塔分別偏好 <110>、<112> 與 <111> 生長方向。表面能、界面能與動力的影響係決定 Ge 奈米結構生長的重要因素。也探討在950˚C氬氣環境中,經由熱蒸發 Ge 粉末以銅催化生長 Ge 奈米線。Ge 奈米線在500-600˚C經由 VSS 機制以 top-growth 模式生長。
The Ag-catalyzed growth of straight Ge nanowires (GeNWs), serrate Ge nanobelts (GeNBs), and hexagonal Ge nanotowers (GeNTs) by the thermal evaporation of Ge powder at 950˚C in Ar were studied. The top-growth mode was found for the growth of GeNWs and GeNBs at 550-600˚C via the vapor-solid-solid (VSS) process, while the bottom-growth mode was found for that of GeNTs at 700-750˚C via the vapor-liquid-solid process. This result shows that the growth mode for the Ag-catalyzed Ge nanostructures is temperature-dependent. The large size of AgGe droplets formed at high temperatures is beneficial to the growth of GeNTs with the bottom-growth mode. In addition, the growth mechanisms of Ge nanostructures are discussed. The GeNWs, GeNBs, and GeNTs favored the <110>, <112>, and <111> growth orientations, respectively. The surface energy, interfacial energy, and kinetic effect are important factors in determining the growth direction of Ge nanostructures. The Cu-catalyzed growth of GeNWs by the thermal evaporation of Ge powder at 950˚C in Ar was also studied. The top-growth mode was also found in the growth of GeNWs at 500-600˚C via the VSS process.
1. 馬遠榮,“科學發展”382, 72 (2004)
2. X. D. Wang, J.H. Song, and Z. L. Wang, J. Mater. Chem. 17, 711(2007)
3. X. S. Peng, G. S. Wu, and Holt-Hindle, P, et al. Mater. Lett. 62, 1969 (2008)
4. C. L. Hsin, J. H. He, and C.Y. Lee, et al. Nano Lett. 7, 1799 (2007)
5. Z. L. Wang, Z. W. Pan, Z. R. Dai, Microsci. Microanal. 8, 467 (2002)
6. H.W. Kim, Func. Mater. Devices 517, 53 (2006)
7. T. Qiu, X. L. Wu, F. Y. Jin, et al. Appl. Surf. Sci. 253, 3987 (2007)
8. X. K. Hu, Y. T. Qian, Z. T. Song, et al. Chem. Mater. 20, 1527 (2008)
9. T. Karabacak, A. Mallikarjunan, J. P. Singh, et al. Appl. Phys. Lett. 83, 3096 (2003)
10. L. C. Wang, Y. M. Liu, M. Chen, et al. J. Phys. Chem. C 112, 6981 (2008)
11. S. M. Zhou, H. C. Gong, B. Zhang, et al. Nanotechnology 19, 175303 (2008)
12. Y. R. Ma, C. M. Lin, C. L. Yeh, et al. J. Vac. Sci. Technol. B 23, 2141 (2005)
13. F. Wang, G. Q. Jin, X. Y. Guo, Mater. Lett. 60, 330 (2006)
14. X. F. Duan, C. M. Lieber, J. A. C. S. 122, 188 (2000)
15. A. D. Berry, R. J. Tonucci, M. Fatemi, Appl. Phys. Lett. 69, 2846 (1996)
16. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, et al. Solid State Communications 109, 677 (1999)
17. C. Q. Xu, Z. C. Zhang, Q. Ye, et al. Chem. Lett. 32, 198 (2003)
18. A. I. Hochbaum, R. K. Chen, R. D. Delgado, et al. Nature 451, 163 (2008)
19. A. I. Boukai, Y. Bunimovich, Jamil Tahir-Kheli, et al. Nature 451, 168 (2008)
20. D. Nagesha, M. A. Whitehead, J. L. Coffer, Adv. Mater. 17, 924 (2005)
21. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
22. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
23. Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
24. Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
25. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
26. P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
27. 盧永坤, “奈米科技概論”,滄海書局(2005)
28. 張俊彥譯,施敏著,“半導體元件物理與製作技術” ,高立圖書有限公司
29. Y. Huang, J. Lin, J. Zhang, X. X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
30. D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
31. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
32. S. Kodambaka, J Tersoff, M.C.Reuter,F.M.Ross, Science 316, 4 (2007)
33. G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
34. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
35. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
36. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
37. M. Johnsson, Solid State Ionics 172, 365 (2004)
38. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
39. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
40. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
41. P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
42. K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
43. B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
44. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
45. Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
46. S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
47. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
48. J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
49. T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
50. Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
51. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
52. T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
53. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
54. K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
55. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
56. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
57. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
58. C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
59. A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
60. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
61. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
62. H. W. Kim ,S. H. Shim, J. W. Lee, Physica E 37 (2007 163)
63. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
64. M. Nagai, Electrochemical and Solid-State Lett. 10, H43 (2007)
65. S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Crystal Growth 247, 357 (2003) .
66. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
67. Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
68. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
69. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
70. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
71. X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
72. Y. Yao, S. Fan, Materials Letters 61, 177 (2007)
73. J. Arbiol, B. Kalache, P. R. Cabarrocas, et al. Nanotechnology 18, 305606 (2007)
74. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000)
75. Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006)
76. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, L . R. Wallenberg, Nature Mater. 3, 677 (2004)
77. N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
78. T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
79. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
80. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
81. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
82. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
83. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
84. X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
85. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
86. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
87. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
88. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
89. Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
90. L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
91. L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
92. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
93. X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)
94. T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
95. H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel Chem. Mater. 17, 5705 (2005)
96. E. I. Givargizov, J. Crystal Growth 20, 217 (1973)
97. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997)
98. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko,C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)
99. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
100. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
101. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995)
102. Y. Y. Wu and P. D. Yang, Chem. Mater. 12, 605 (2000).
103. D. W. Wang and H. J. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002).
104. T. Hanrath and B. A. Korgel, Adv. Mater. 15, 437 (2003).
105. J. R. Morante, J. E. Carceller, A. Herms, P. Cartujo, and J. Barbolla, Appl. Phys. Lett. 41, 656 (1982).
106. A. M. Morales, and C. M. Lieber, Science 279, 208 (1998)
107. S. Mathur, H. Shen, V. Sivakov, and U. Werner, Chem. Mater. 16, 2449 (2004)
108. W. L. Lo, H. C. Chang, T. J. Hsu, and W. T. Lin, Jpn. J. Appl. Phys. 47, 3299 (2008)
109. X. Sun, G. Calebotta, B. Yu, G. Selvaduary, and M. Meyyappan, J. Vac. Sci. Technol. B25, 415 (2007)
110. H. Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel, Chem. Mater. 17, 5705 (2005)
111. H. Y. Tuan, D. C. Lee, and B. A. Korgel, Angew. Chem. Int. Ed. 45, 5184 (2006)
112. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, and D. P. Norton, Appl. Phys. Lett. 81, 3046 (2002).
113. Z. Zhu, T. L. Chen, Y. Gu, J. Warren, and R. M. Osgood, J. Chem. Mater. 17, 4227 (2005)
114. C. Li, G. J. Fang, Y. Y. Ren, Q. Fu, and X. Z. Zhao, J. Nanosci. Nanotechnol. 6, 1467 (2006)
115. Z. J. Li, X. L. Chen, H. J. Li, Q. Y. Tu, Z. Yang, Y. P. Xu, and B. Q. Hu, Appl. Phys. A 72, 629 (2001).
116. J. W. Lee, H. W. Kim, and S. H. Shim, Adv. Mater. Res. 15-17, 947 (2007)
117. J. Zhang, X. Qing, F. H. Jiang, and Z. H. Dai, Chem. Phys. Lett. 371, 311 (2003)
118. X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003)
119. K. Sreejith, J. Nuwad, C. Thinaharan, G. K. Dey, and C. G. S. Pillai, Appl. Surf. Sci. 253, 7041 (2007)
120. X. Jiang and A. Yu, J. Nanopart. Res. 10, 475 (2008)
121. Z. J. Li, H. J. Li, X. L. Chen, L. Li, Y. P. Xu, and K. Z. Li, J. Alloys Comp. 345, 275 (2002)
122. S. H. Yun, J.Z. Wu, A. Dibos, X. Gao, and U. O. Karlsson, Appl. Phys. Lett. 87, 113109 (2005)
123. D, W. Wang, Y. L. Chang, Q. Wang, L. Cao, D. B. Farmer, R. G. Gordan, and H. Dai , J. Am. Chem. Soc.126,11602 (2004)
124. M. Nagai, Electrochemical and Solid-State Lett. 10, H43 (2007).
125. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Phys. Rev. B 42, 8548 (1990).
126. A. H. Carim, K. K. Lew, and J. M. Redwing, Adv. Mater. 13, 1489 (2001)
127. F. M. Davidson, M, D. Lee, D. D. Fanfair, and B. A. Korgel, J. Phys. Chem. C 111, 2929 (2007)
128. D. F. Lynch, Acta Cryst. A27, 399 (1971).
129. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004).
130. T. Hanrath and B. A. Korgel, Small 1, 717 (2005).
131. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, Nano Lett. 4, 433 (2004)
132. D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys 2th edition, p179
133. D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys 2th edition, p115
134. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 - 4521 (2000)
135. Y. Yao, S. Fan, Mater. Lett. 61, 177 (2007)
136. X. H. Sun, C. Didychuk, T. K. Sham, and N B Wong, Nanotechnology 17, 2925 (2006)
137. K. W. Kolasinski, Current Opinion in Solid State and Materials Science 10, 182 (2006)
138. T. B. Massalski, J. L. Murray, L. H. Bennet, and H. Baker, : Binary Alloy Phase Diagrams, 1, 960 (1986)