簡易檢索 / 詳目顯示

研究生: 黃于芹
Huang, Yu-Chin
論文名稱: 中國東南基性岩脈中地殼訊號來源之探討
Geochemical characteristics of the mafic dikes in Southeast China: investigations on the origin of crustal signatures
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 中國東南地區基性岩脈地殼混染源區混染
外文關鍵詞: Southeast China, mafic dikes, crustal contamination, source contamination
相關次數: 點閱:71下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中國東南地區是世界上重要的火成岩體產地之一,對於此地區晚中生代的構造岩漿演化之成因探討,至今仍有許多學者提出不同的隱沒模式,嘗試解釋此區域廣泛分布火成岩之成因,然而,在區域地球動力學的角度上,仍建立在古太平洋板塊隱沒形成的主動大陸邊緣。近年來,有許多研究利用中國東南地區的基性火成岩去探討地函源區特徵,而在過去研究中,基性岩相關地化資料顯示,多數基性岩具有地殼訊號,且多數學者認為地殼物質訊號應為隱沒作用帶入源區屬於源區混染(Source contamination),而很少學者探討地殼混染(Crustal contamination)的可能性。因此本研究將針對地殼與源區作用關係進行探討,並希望可以了解中國東南地區岩漿與地殼物質交互作用的構造演化關係。
    本研究樣本多取自於福建地區,成分以輝綠岩為主,並利用其主要元素、微量元素及Sr-Nd同位素的分析結果進行探討。主要元素中, SiO2含量介於48.9─55.6%,全鹼值(Total alkalis, Na2O+K2O)含量為3.02- 6.32%、CaO含量為6.24- 9.77%,由於樣本之燒失率(LOI)介於1.58-3.67%(正常玄武岩為0.05%),代表樣本受到蝕變作用影響,因此我們無法以主要元素將樣本分類。首先,樣本依據微量元素分群,在整體不相容元素分布圖中,樣本具有Rb、Ba富集,而Nb、Ta負異常之現象者為group 1,而不具Nb、Ta和Ti負異常者為group 2樣本。然而本研究缺乏定年資料,因此以微量元素訊號及Sr-Nd同位素之特徵與中生代和新生代玄武岩的特徵比較,結果顯示樣本屬於中生代基性岩。Zr/TiO2- Nb/Y圖中,樣本屬於玄武岩及玄武岩質安山岩,而在Th- Co圖中樣本屬於鈣鹼性及高鉀鈣鹼性岩漿。在上述資訊中,微量元素之Nb、Ta負異常及鈣鹼性和高鉀鈣鹼性岩漿等地化特徵顯示樣本成分受到地殼物質加入影響,加上Nb/Y- Rb/Y圖中,group 1樣本之Nb/Rb值小於2,亦暗示樣本成分受到地殼物質影響。
    在兩端元混合模式討論中,樣本分別受到地殼和源區混染作用影響,且地殼與地函之交互作用於角閃岩相的深度區間。在源區混染之混合模式中,變質泥岩經低於20%的部份熔融,以10-30%的比例混入虧損地函中;地殼混染之混合模式,其N-MORB和E-MORB岩漿分別與變質泥岩產生之岩漿混合的兩模式皆可解釋樣本之地殼訊號來源,經歷低於20%的部份熔融,以10-20%的比例混入地函源岩漿中,由此現象推論,樣本之地函源岩漿成份介於N-MORB和E-MORB岩漿之間。
    整合所有結果,推測本研究區域應處於拉張的環境,隨構造由聚合轉為拉張,具有EM II訊號之地函發生部份熔融,並在岩漿上升的過程中受到地殼混染,因而同時具有源區混染及地殼混染之訊號。此外,地殼混染的成因也與輝綠岩之演化機制相符,因為岩漿庫在地殼中冷卻過程中,與圍岩產生交互作用,使地殼物質混入岩漿庫為必然現象,故所分析輝綠岩之Nb、Ta負異常和鈣鹼質岩漿之訊號並非單由島弧隱沒造成,而同時亦是地殼混染產生的現象,但仍無法排除源區混染之可能性。

    SUMMARY
    The Cretaceous basaltic dikes in southeast China are characterized by Nb-Ta-Ti depletions relative to elements of similar compatibilities during mantle melting. Both source and crustal contaminations have been proposed to be responsible for these crustal signatures, however, without supports from model calculations. In this study, five basaltic dike samples were analyzed for major and trace element compositions as well as Sr and Nd isotopic ratios. These data were compared to the results from model calculations simulating source contamination and crustal contamination to address the roles of these two processes in generating the crustal signatures in the samples.
    The samples are composed of subordinate amounts of plagioclase, clinopyroxene and chlorite with minor amounts of calcite. They have SiO2, Al2O3, CaO, MgO, and Na2O content in the ranges of 48.9–55.6%, 13.6–17.9%, 6.24–9.77%, 3.8–8.17% and 2.56–3.72%, respectively. In the primitive mantle normalized trace element abundance plot, nine of the fourteen samples show prominent depletions in Nb, Ta, and Ti concentrations, reflecting the involvement of crustal component. Based on the mixing model plots, the data can explained with generation from a depleted mantle that were metasomatized by melt derived from subducted metapelite by 10-30% partial melting. Alternatively, mixtures containing 80-90% mantle-derived melts (N-MORB or E-MORB) and 10–20% metapelite-derived melt are also characterized by Nb, Th, Zr and La concentrations comparable to the samples. Similar results were obtained from 87Sr/86Sr–143Nd/144Nd simulation. It, therefore, appears that these Cretaceous mafic dikes were generated from a metasomatized mantle and experienced crustal contamination.
    Key words: Southeast China, mafic dikes, crustal contamination, source contamination.

    摘要 I Abstract III 誌謝 VII 章節目錄 VIII 表目錄 X 圖目錄 X 第一章 緒論 1 1.1前言 1 1.2地質背景 4 第二章 研究方法及原理 8 2.1樣本介紹 8 2.1.1採樣區域之地質背景 8 2.2岩象觀察 10 2.3全岩之主要元素及微量元素分析 10 2.3.1樣本磨粉 10 2.3.2 X光螢光分析儀(X-ray Fluorescence Spectrometer,XRF) 10 2.3.3樣本酸溶處理 11 2.3.4四極柱感應耦合電漿質譜儀分析(Q-ICP-MS) 12 2.4 Sr-Nd同位素分析 13 2.4.1 Sr-Nd元素層析 13 2.4.2多接收器感應耦合電漿質譜儀分析 (MC-ICP-MS) 14 第三章 分析結果 18 3.1岩象 18 3.2主要元素 21 3.3微量元素 28 3.3.1檢測微量元素精準度 28 3.3.2微量元素含量 32 3.4 Sr – Nd同位素 44 第四章 討論 48 4.1源區混染之混合模擬計算 51 4.1.1地函與固體沉積物混合 55 4.1.2地函與地殼物質或沉積物熔融產生之岩漿混合模式 62 4.2地殼混染之混合模擬計算 76 4.2.1地函源岩漿與固體地殼物質成分混合模式 77 4.2.2 地函源岩漿與地殼物質產生岩漿混合模式 85 4.3小結 93 第五章 結論 94 參考文獻 95

    Chazot, G. and Bertrand, H., 1995. Genesis of silicic magmas during Tertiary continental rifting in Yemen. Lithos, 36(2): 69-83.
    Chung, S.L., Cheng, H., Jahn, B.M., O'Reilly, S.Y. and Zhu, B., 1997. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos, 40(2): 203-220.
    Chung, S.L., Jahn, B.M., Chen, S.J., Lee, T. and Chen, C.H., 1995. Miocene basalts in northwestern Taiwan: evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59(3): 549-555.
    Chung, S.L., Sun, S.S., Tu, K., Chen, C.H. and Lee, C.Y., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 112(1): 1-20.
    Donnelly, K.E., Goldstein, S.L., Langmuir, C.H. and Spiegelman, M., 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226(3): 347-366.
    Eggins, S., Woodhead, J., Kinsley, L., Mortimer, G., Sylvester, P., McCulloch, M., Hergt, J. and Handler, M., 1997. A simple method for the precise determination of≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4): 311-326.
    Ewart, A. and Griffin, W., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1): 251-284.
    Flower, M.F., Zhang, M., Chen, C.Y., Tu, K. and Xie, G.H., 1992. Magmatism in the south China basin: 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chemical Geology, 97(1-2): 65-87.
    Foley, S.F., Barth, M.G. and Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938.
    Furman, T. and Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 48(1): 237-262.
    Gans, P.B., Mahood, G.A. and Schermer, E., 1989. Synextensional magmatism in the Basin and Range Province; a case study from the eastern Great Basin. Geological Society of America Special Papers, 233: 1-53.
    Gilder, S.A., Coe, R.S., Wu, H., Kunag, G., Zhao, X. and Wu, Q., 1995. Triassic paleomagnetic data from south China and their bearing on the tectonic evolution of the western circum-Pacific region. Earth and Planetary Science Letters, 131(3-4): 269-287.
    Gilder, S.A., Gill, J., Coe, R.S., Zhao, X., Liu, Z., Wang, G., Yuan, K., Liu, W., Kuang, G. and Wu, H., 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154.
    Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of petrology, 48(12): 2341-2357.
    Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T. and Rogers, N., 1995. Calc‐alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research: Solid Earth, 100(B6): 10271-10286.
    Ho, K.S., Chen, J.C., Lo, C.H. and Zhao, H.L., 2003. 40 Ar–39 Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang–Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chemical Geology, 197(1): 287-318.
    Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613): 219.
    Hsü, K.J., Li, J., Chen, H., Wang, Q., Sun, S. and Şengör, A., 1990. Tectonics of South China: key to understanding West Pacific geology. Tectonophysics, 183(1-4): 9-39.
    Ito, E., White, W.M. and Göpel, C., 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62(3-4): 157-176.
    John, B.M., Zhou, X.H. and Li, J.L., 1990. Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, 183(1-4): 145-160.
    Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571): 237.
    Klein, M., Stosch, H.G. and Seck, H.A., 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chemical Geology, 138(3): 257-271.
    Klemme, S., Blundy, J.D. and Wood, B.J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109-3123.
    Klemme, S., Günther, D., Hametner, K., Prowatke, S. and Zack, T., 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3): 251-263.
    Klemme, S., Prowatke, S., Hametner, K. and Günther, D., 2005. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochimica et Cosmochimica Acta, 69(9): 2361-2371.
    Lan, C.Y., Jahn, B.M., Mertzman, S.A. and Wu, T.W., 1996. Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences, 14(1-2): 11-28.
    Lan, C.Y., Lee, C.S., Shen, J.J.S., Lu, C.Y., Mertzman, S.A. and Wu, T.W., 2002. Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications. Western Pacific Earth Sciences, 2(2): 205-222.
    Lan, C.Y., Lee, T., Jahn, B.M. and Yui, T.F., 1995. Taiwan as a witness of repeated mantle inputs— Sr-Nd-O isotopic geochemistry of Taiwan granitoids and metapelites. Chemical Geology, 124(3-4): 287-303.
    Lapierre, H., Jahn, B.M., Charvet, J. and Yu, Y.W., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics, 274(4): 321-338.
    Li, B., Jiang, S.Y., Zhang, Q., Zhao, H.X. and Zhao, K.D., 2015. Cretaceous crust–mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism. Tectonophysics, 661: 136-155.
    Li, J., Zhang, Y., Dong, S. and Johnston, S.T., 2014a. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134: 98-136.
    Li, X.H., 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305.
    Li, Z., Qiu, J.S. and Yang, X.M., 2014b. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Science Reviews, 128: 232-248.
    Li, Z.X. and Li, X.H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179-182.
    Liang Shu, S., 2006. Predevonian tectonic evolution of south China: from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities, 12(4): 418-431.
    Liu, C.-Q., Masuda, A. and Xie, G.-H., 1994. Major-and trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chemical geology, 114(1-2): 19-42.
    Lugmair, G. and Marti, K., 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357.
    Marks, M., Halama, R., Wenzel, T. and Markl, G., 2004. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning. Chemical Geology, 211(3): 185-215.
    Martín-Barajas, A., Stock, J.M., Layer, P., Hausback, B., Renne, P. and López-Martínez, M., 1995. Arc-rift transition volcanism in the Puertecitos volcanic province, northeastern Baja California, Mexico. Geological Society of America Bulletin, 107(4): 407-424.
    Martin, H., 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology, 28(5): 921-953.
    McKenzie, D. and O'nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091.
    McMillan, N.J. and Dungan, M.A., 1986. Magma mixing as a petrogenetic process in the development of the Taos Plateau volcanic field, New Mexico. Journal of Geophysical Research: Solid Earth, 91(B6): 6029-6045.
    Mollel, G.F. and Swisher, C.C., 2012. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism. Journal of Human Evolution, 63(2): 274-283.
    Moreno, F.A.P. and Demant, A., 1999. The Recent Isla San Luis volcanic centre: petrology of a rift-related volcanic suite in the northern Gulf of California, Mexico. Journal of Volcanology and Geothermal Research, 93(1): 31-52.
    Nash, W.P. and Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322.
    Othman, D.B., White, W.M. and Patchett, J., 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94(1-2): 1-21.
    Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. In: D.A. Wyman (Editor), Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, Geological Association of Canada, pp. 113.
    Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
    Qi, Q., Taylor, L.A. and Zhou, X., 1994. Geochemistry and petrogenesis of three series of Cenozoic basalts from southeastern China. International Geology Review, 36(5): 435-451.
    Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263.
    Rudnick, R.L. and Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3): 267-309.
    Shellnutt, J.G., Wang, C.Y., Zhou, M.F. and Yang, Y., 2009. Zircon Lu–Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): constraints on the mantle source. Journal of Asian Earth Sciences, 35(1): 45-55.
    Sheth, H.C., Torres-Alvarado, I.S. and Verma, S.P., 2000. Beyond subduction and plumes: A unified tectonic-petrogenetic model for the Mexican volcanic belt. International Geology Review, 42(12): 1116-1132.
    Sheth, H.C., Torres-Alvarado, I.S. and Verma, S.P., 2002. What is the" calc-alkaline rock series"? International Geology Review, 44(8): 686-701.
    Shu, L.S., 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053.
    Shu, L.S., Faure, M., Wang, B., Zhou, X. and Song, B., 2008. Late Palaeozoic–Early Mesozoic geological features of South China: response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience, 340(2): 151-165.
    Smith, A.D., 1998. The geodynamic significance of the DUPAL anomaly in Asia. Mantle dynamics and plate interactions in East Asia: 89-105.
    Steiger, R.H. and Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362.
    Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
    Sun, T., 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China, 25(3): 332-335.
    Takahashi, T., 1997. Major and trace element analysis of silicate rocks using X-ray fluorescence spectrometer RIX 3000. The Rigaku Journal, 28: 25-37.
    Tepley, F.J., Lundstrom, C.C., McDonough, W.F. and Thompson, A., 2010. Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos, 118(1): 82-94.
    Tsuno, K. and Dasgupta, R., 2012. The effect of carbonates on near-solidus melting of pelite at 3GPa: relative efficiency of H 2 O and CO 2 subduction. Earth and Planetary Science Letters, 319: 185-196.
    Tu, K., Flower, M.F.J., Carlson, R.W., Zhang, M. and Xie, G., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology, 19(6): 567-569.
    Verma, S.P., 1999. Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 93(1): 151-171.
    Verma, S.P., 2000a. Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chemical Geology, 164(1): 35-60.
    Verma, S.P., 2000b. Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. In: G.J.A.-D. Hugo Delgado-Granados, Joann M. Stock (Editor), Cenozoic tectonics and volcanism of Mexico, Geological Society of America, pp. 195.
    Wang, Z., 2002. The origin of the Cretaceous gabbros in the Fujian coastal region of SE China: implications for deformation-accompanied magmatism. Contributions to Mineralogy and Petrology, 144(2): 230-240.
    Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397.
    Workman, R.K. and Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1): 53-72.
    Xie, G., Hu, R., Mao, J., Pirajno, F., Li, R., Cao, J., Jiang, G. and Zhao, J., 2006. K-Ar Dating, Geochemical, and Sr-Nd-Pb Isotopic Systematics of Late Mesozoic Mafic Dikes, Southern Jiangxi Province, Southeast China: Petrogenesis and Tectonic Implications. International Geology Review, 48(11): 1023-1051.
    Xie, X., Xu, X.S., Zou, H.B. and Xing, G.F., 2001. Trace element and Nd-Sr-Pb isotope studies of Mesozoic and Cenozoic basalts in coastal area of SE China. Acta Petrologica Sinica, 17(4): 617-628.
    Xu, X., Dong, C., Li, W. and Zhou, X., 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China: the significance of the gabbro-diorite–granite association. Lithos, 46(2): 299-315.
    Zack, T., Foley, S.F. and Rivers, T., 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). Journal of Petrology, 43(10): 1947-1974.
    Zhang, M., Tu, K., Xie, G. and Flower, M.F.J., 1996. Subduction-modified subcontinental mantle in South China: trace element and isotope evidence in basalts from Hainan Island. Chinese Journal of Geochemistry, 15(1): 1-19.
    Zhao, J.H., 2004. Chronology and geochemistry of mafic rocks from Fujian Province: Implications for the mantle evolution of SE China since Late Mesozoic. Unpublished doctoral dissertation, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang.
    Zhao, J.H., Hu, R. and Liu, S., 2004. Geochemistry, petrogenesis, and tectonic significance of Mesozoic mafic dikes, Fujian province, southeastern China. International Geology Review, 46(6): 542-557.
    Zhao, J.H., Hu, R., Zhou, M.F. and Liu, S., 2007. Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine, 144(06): 937-952.
    Zhou, J.C. and Chen, R., 2001. Geochemistry of late Mesozoic interaction between crust and mantle in southeastern Fujian Province. Geochimica, 30(6): 547-558.
    Zhou, X., Sun, T., Shen, W., Shu, L. and Niu, Y., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29(1): 26.
    Zhou, X.M. and Li, W.X., 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269-287.
    Zindler, A. and Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571.
    Zou, H., Zindler, A., Xu, X. and Qi, Q., 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1): 33-47.
    王德滋,中國東南部晚中生代花崗質火山-侵入雜岩成因與地殼演化,科學出版社,2002。
    李献華、胡瑞忠、饒冰,粵北白堊紀基性岩脈的年代學和地球化學,地球化學,第26卷第2期,第14-31頁,1997。
    馮宗帜,福建中生代火山作用與構造環境,中國區域地質,第4期,第311-316頁,1993。
    葛小月、李献華、周漢文,瓊南晚白堊世基性岩群的年代學、元素地球化學和Sr-Nd同位素研究,地球化学,第一期,第11-20頁,2003。
    盧清地,福建中生代火山活動的基本特徵及構造環境,岩石礦物學雜誌,第一期,第57-68頁,2001。

    無法下載圖示 校內:2022-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE