簡易檢索 / 詳目顯示

研究生: 郭丞軒
Kuo, Cheng-Hsuan
論文名稱: 高效能反應式濺鍍法製備ZnSnN2及其壓電相關性質之研究
ZnSnN2 Fabrication Using Combinatorial Reactive Sputtering and Its Study of Piezo-related Properties
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 114
中文關鍵詞: ZnSnN2變頻濺鍍濃度梯度壓光電性質
外文關鍵詞: Orthorhombic ZnSnN2, Reactive rf sputtering, Composition spread, Piezotronic / Piezophototronic effects
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnSnN2是近三年來開始被討論的穩定態氮化物。根據文獻,ZnSnN2之能隙約為2電子伏特,可有效地利用可見光範圍接近600奈米,在光催化應用相當具有潛力。另外,其耐強酸強鹼之性質使之可在不同環境之下正常發揮其壓光電以及光催化特性。此外,其不對稱之晶格可具備有壓電相關性質,能更進一步提升光催化效率。在目前分解有機汙染物以及綠色能源之環保意識之下,其壓光電性質可望成為新一代之綠色材料。然而單晶之ZnSnN2僅成功被合成於高溫高壓環境下,目前較少以濺鍍法製程方式合成。
    本研究中,以高效能變頻濺鍍製程製備Sn3N4參雜Zn 原子合成Zn-Sn3N4濃度梯度在FTO基材上。藉由調整氬氣與氮氣之比例,濺射壓力,基材加熱溫度,電子槍到基板之工作距離,及Zn參雜量來探討ZnSnN2之合成之參數條件。並透過XRD,SEM,XPS,及I-V 特徵圖來研究其壓電相關性質。
    未來工作部分,將調整ZnSnN2之形貌以形成具有優良結晶度與較好的分離程度奈米柱陣列,以大幅提高其壓電相關性質。

    Fabrication of the new class of ternary nitrides (Zinc Tin Nitride (ZnSnN2)) is full of challenges because of its high formation energies. However, it is thermodynamically stable, and owns a direct band gap of approximately 2 eV, which is excellent for photocatalysis. Furthermore, ZnSnN2 is an environmentally friendly material since it only contains earth-abundant and non-toxic elements – Zn and Sn, and it possesses high tolerance to acidic and basic environments enabling applications at a wide range of tough environments. Orthorhombic ZnSnN2 has a non-centrosymmetric structure, enabling piezotronic and piezophototronic properties, which is demonstrated to further enhance the efficiency of photocatalysis in this study.
    In this study, ZnSnN2 was successfully obtained from the Zn-Sn3N4 composition spread using RF reactive sputtering on a FTO substrate. We found the Locations 1 and 2 exhibited the substantial amount and excellent crystallinity of ZnSnN2. Pna21 and Pmc21 orthorhombic structures of ZnSnN2 was identified from the measured XRD patterns via the deconvolution algorithm of the peaks at around 33o and 35o. In addition, HCl(aq) was used to etch away metal Sn in the sample for the piezo-related properties measurement. The asymmetric I-V characteristics and the Schottky barrier height as a function of pressures suggested the piezotronic and piezophototronic effects, which further supported the successful fabrication of orthorhombic structure of ZnSnN2.

    摘要--------------------------------------------------I Abstract---------------------------------------------II 致謝-------------------------------------------------III Table Content----------------------------------------VI Figure Content---------------------------------------VII Chapter 1. Introduction-------------------------------1 I. Objective------------------------------------------1 II. Why piezoelectric materials ----------------------1 A. The advantages and disadvantages of typical piezoelectric oxides-----------------------2 B. Typical nitrides.----------------------------------4 (1) Common nitrides and their applications.-----------4 (2) Pizeoelectric nitrides----------------------------5 a. Typical piezoelectric nitrides, III-nitrides-------5 b. Zn-IV-N2.------------------------------------------9 III. Piezoelectric ZnSnN2-----------------------------14 A. Zn3N2 and Sn3N4: basic properties------------------14 (1) Zn3N2---------------------------------------------14 (2) Sn3N4---------------------------------------------19 B. Background and application of ZnSnN2 --------------23 C. Theoretical properties of ZnSnN2-------------------38 IV. Piezophotocatalytic ZnSnN2------------------------40 A. Photocatalysis.------------------------------------40 B. Piezoelectric, piezotronic, and piezophotonic effects--------------------------42 C. Piezophotocatalysis -------------------------------48 V. Motivation-----------------------------------------57 VI. ZnSnN2 combinatorial composition spreads.---------58 A Combinatorial composition spreads-------------------58 B Organization of Combinatorial Methodology of Zinc-Tin Nitride Composition Spread ---------------58 Chapter 2. Experimental Section-----------------------59 I. Materials and Equipment ---------------------------59 A.Sputtering targets, gases, and substrate------------59 B. Equipment------------------------------------------60 a Ultrasonic cleaner----------------------------------60 b. Magnetron reactive sputtering system---------------61 II. Sample fabrication--------------------------------62 A. Pre-sputtering ------------------------------------62 B. Single-composition of Sn3N4------------------------62 C. Zn-Sn3N4 composition spreads-----------------------63 a. Fabrication of self-gradient Sn3N4-----------------63 b. Fabrication of Zn–Sn3N4 composition spreads--------63 D. Etching process------------------------------------64 III. Characterization tools---------------------------65 A. XRD (X-Ray Diffraction) analysis-------------------65 B. SEM (Scanning electron microscopic) ---------------67 C. XPS (X-ray photoelectron spectroscopy) ------------68 D. I-V measurement set-up-----------------------------69 Chapter 3. Results and discussion---------------------70 I. Fabrication of Sn3N4 ------------------------------70 A. Synthesis of high crystalline pure Sn3N4 nano-column-----------------------------70 a. Obtain high quality Sn3N4--------------------------70 b. Morphology tuning----------------------------------73 B. Optimal thickness of Sn3N4 nano-column-------------75 II. Fabrication of ZnSnN2 ----------------------------76 C. Use Zn as the dopants to fabricate ZnSnN2 (Zn-Sn3N4 composition spread) ------------------------76 a. Chemical reactions and defect formation theory-----76 b. Tune natural Sn3N4 gradient and dope Zn gradien----77 c. ZnSnN2---------------------------------------------78 D. Use HCl as the etchant to remove metal Sn----------87 E. Identification of optimal ZnSnN2 region------------90 III. Orthorhombic structures of ZnSnN2 (Pna21 vs. Pmc21)-------------------------94 IV. Piezo-related property measurement----------------97 Chapter 4. Conclusions and future work----------------106 I. Conclusions----------------------------------------106 II. Future work---------------------------------------107 References--------------------------------------------108

    [1] Z. L. Wang, “Piezotronic and Piezophototronic Effects,” J. Phys. Chem. Lett. 1, 1388–1393 (2010).
    [2] M. B. Starr, and X. Wang, “Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials,” Scientific Reports 3:2160, 1-8 (2013).
    [3] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang,
    H. Liu, and Z. L. Wang, “Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect,” Nano Lett. 15, 2372−2379 (2015).
    [4] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, “Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires,” Nano Energy 13, 414–422 (2015).
    [5] J. Zhou, Y. Gu, P. Fei, We. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Flexible Piezotronic Strain Sensor,” Nano Letters 8, 3035-3040 (2008).
    [6] Z. L. Wang, “Nanopiezotronics,” Adv. Mater.19, 889–892 (2007).
    [7] Q. Yang, W. Wang, S. Xu, and Z. L. Wang, “Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect,” Nano Lett. 11, 4012–4017 (2011).
    [8] C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z. L. Wang, “Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-
    Phototronic Effect,” Nano Lett. 12, 3302−3307 (2012).
    [9] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, “Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and
    Switches of ZnO Wires,” Nano Letters 8, 3973-3977 (2008)
    [10] T. Qi, I. Grinberg, J. W. Bennett,
    Y. H. Shin, and A. M. Rappe, K. L. Yeh, and K. A. Nelson, “Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices, “2010 DoD High Performance Computing Modernization Program Users Group Conference.
    [11] K. Shiratsuyu, K. Hayashi, A. Ando, and Y. Sakabe, “Piezoelectric Characterization of Low-Temperature-Fired Pb(Zr,Ti)O3–Pb(Ni, Nb)O3 Ceramics,”
    J. Appl. Phys. 39, 5609–5612 (2000).
    [12] A. Chaipanich, G. Rujijanagul, T. Tunkasiri, “Properties of Sr- and Sb-doped PZT–Portland cement composites,” Appl Phys A 94, 329–337 (2009).
    [13] S. Zhao, G. Li, A. Ding, T. Wang, and Q. Yin, “Ferroelectric and piezoelectric properties of (Na, K)0.5Bi0.5TiO3 lead free ceramics, ”J. Phys. D: Appl. Phys. 39, 2277–2281(2006).
    [14] S. Baradarana, B. Nasiri-Tabrizib, T. S. Velayuthamc, W. J. Basirund, A. A. D. Sarhana, “Thermally inducedcrystallizationofmechanicallyalloyedNa0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 piezoelectric ceramic nanopowders,”Ceramics International 41, 14157–14164 (2015).
    [15] G. Catalan, and J. F. Scott, “Physics and Applications of Bismuth Ferrite,” Adv. Mater. 21, 2463–2485 (2009).
    [16] Y. Zeng, Y. Zheng, J. Xin, E. Shi, “First-principle study the piezoelectricity of a new quartz-type crystal BaZnO2,” Computational Materials Science 56, 169–171 (2012).
    [17] Y. Wei, X. Wang, J. Zhu, X. Wang, and J. Jia, “Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3–BaTiO3,” Ceramics J. Am. Ceram. Soc. 96, 3163–3168 (2013).
    [18] V. Chang, H. RoJas, and J. Jorge, “Piezoelectric and thermoelectric response of cuprous oxide, Cu2O,” Sensors and Actuators A, 37-38, 375-378 (1993).
    [19] A. Kołodziejczak-Radzimska, and T. Jesionowski, “Zinc Oxide—From Synthesis to Application: A Review,” Materials 7, 2833-2881 (2014).
    [20] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and
    Z. L. Wang, “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire,” Nano Letters 6, 2768-2772 (2006).
    [21] M. K. Lo, S. Y. Lee, and K. S. Chang, “Study of ZnSnO3‑Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis,” J. Phys. Chem. C 119, 5218−5224 (2015).
    [22] J. M. Wu, C. Y. Chen, Y. Zhang, K. H. Chen, Y. Yang, Y. Hu, J. H. He, and
    Z. L. Wang, “Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO3 Nanowire/ Microwire,” Nano 6, 4369–4374 (2012).
    [23] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, and Z. L. Wang, “Flexible and Transparent Nanogenerators Based on a Composite of Lead-Free ZnSnO3 Triangular-Belts,” Adv. Mater. 24, 6094–6099 (2012).
    [24] J. Y. Son, G. Lee, M. H. Jo, H. Kim, H. M. Jang, and Y. H. Shin, “Heteroepitaxial Ferroelectric ZnSnO3 Thin Film,” J. AM. CHEM. SOC. 131, 8386–8387 (2009).
    [25] Y. Y. Choi, H. K. Kim, H. W. Koo, T. W. Kim, and S. N. Lee, “Flexible ZnSnO3/Ag/ZnSnO3 multilayer electrodes grown by roll-to-roll sputtering on
    flexible polyethersulfone substrates,” J. Vac. Sci. Technol. A 29, 061502, 1-7 (2011).
    [26] C. Hong, X. Jin, J. Totleben, J. Lohrman, E. Harak, B. Subramaniam, R. V. Chaudharib, and S. Ren, “Graphene oxide stabilized Cu2O for shape selective
    Nanocatalysis,” J. Mater. Chem. A 2, 7147-7151 (2014).
    [27] P. Benezeth, D. A. Palmer, D. J. Wesolowski, “Potentiometric studies of zinc oxide solubility to high temperature,” Goldschmidt Conference Toulouse (1998).
    [28] P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials 8, 3128-3154 (2015).
    [29] H. Wu, and W. Chen, “Copper Nitride Nanocubes: Size-Controlled Synthesis and Application as Cathode Catalyst in Alkaline Fuel Cells,” J. Am. Chem. Soc. 133, 15236–15239 (2011).
    [30] C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu, and M. Popescu, “Optical, electrical and structural properties of AlN thin films,” IEEE 95, 183-186 (1995).
    [31] G. V. Samsonov, and V. K. Kazakov, “Refractory Materials Made from Boron Nitride-Silicon Nitride and Boron Nitride-Silicon Carbide,” Research Work 7, 30-35 (1965).
    [32] Q. Weng, X. Wang, C. Zhi, Y. Bando, and D. Golberg, “Boron Nitride Porous Microbelts for Hydrogen Storage,” ACS NANO 7, 1558–1565 (2013).
    [33] T. Ichikawa, S. Isobe, N. Hanada, H. Fujii, “Lithium nitride for reversible hydrogen storage,” Journal of Alloys and Compounds 365, 271–276 (2004).
    [34] A. Y. Liu, “Stability of Carbon nitride solids,” Physical Review B 50, 10362-1065 (1994).
    [35] J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo,
    M. Hara, H. Kobayashi, K.Domen, and Y. Inoue, “RuO2-Loaded β-Ge3N4 as a Non-Oxide Photocatalyst for Overall Water Splitting,” J. AM. CHEM. SOC. 127, 4150-4151 (2005).
    [36] L. Baggetto, N. A. M. Verhaegh, R. A. H. Niessen,
    F. Roozeboom, J. C. Jumas, and P. H. L. Nottena, “Tin Nitride Thin Films as Negative Electrode Material for Lithium-Ion Solid-State Batteries,” Journal of The Electrochemical Society, 157, 340-A347 (2010).
    [37] J. Wu, and W. Walukiewicz, “Band gaps of InN and group III nitride alloys,” Superlattices and Microstructures 34, 63–75 (2003).
    [38] P. Kung, and M. Razeghi, “III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology,” Opto-electronics Review 8, 201-239 (2000).
    [39] M. Chen, and R. E. Blankenship, “Expanding the solar spectrum used by
    Photosynthesis,” Trends in Plant Science, 16, 427-431 (2011).
    [40] J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, T. Malinauskas, “InxGa1-xN performanceasaband-gap-tunablephoto-electrode in acidic and basic solutions,” Solar Energy Materials & Solar Cells 130, 36–41 (2014).
    [41] E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, “Spontaneous and piezoelectric polarization effects in III–V nitride
    Heterostructures,” J. Vac. Sci. Technol. B 17, 1742-1749 (1999).
    [42] R. Agrawal, and H. D. Espinosa, “Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation,” Nano Lett. 11, 786–790 (2011).
    [43] Y. K. Kuo, T. H. Wang, and J. Y. Chang, “Blue InGaN Light-Emitting Diodes
    With Multiple GaN-InGaN Barriers,” IEEE JOURNAL OF QUANTUM ELECTRONICS 48, 946-951 (2012).
    [44] S. Valdueza-Felip, E. Bellet-Amalric, A. Núñez-Cascajero, Y. Wang, M. P. Chauvat, P. Ruterana, S. Pouget, K. Lorenz, E. Alves, and E. Monroy, “High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy:
    Growth conditions, strain relaxation, and In incorporation kinetics,” J. Appl. Phys. 116, 233504-233512 (2014).
    [45] Shenglin Ye, “Preparation, Characterization, and Device Applications of Zinc Tin Nitride,” UNIVERSITY OF CALIFORNIA Los Angeles.
    and Zinc Tin Oxynitride Materials
    [46] T. Endo, Y. Sato, H. Takizawa, M. Shimada, “High-pressure Synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure,” Journal of Materials Science Letters 11, 424-426 (1992).
    [47] B. P. Cook, H. O. Everitt, I. Avrutsky, A. Osinsky, A. Cai, and J. F. Muth, “Refractive indices of ZnSiN2 on r-plane sapphire,” APPLIED PHYSICS LETTERS 86, 121906-121908 (2005).
    [48] A. Osinsky, V. Fuflyigin, L. D. Zhu, A. B. Goulakov, J. W. Graff, E. F. Schubert , “New Concepts and Preliminary Results for SIC Bipolar Transistors:
    ZnSiN, and ZnGeN, Heterojunction Emitters,” IEEE, 168-172 (2000).
    [49] T. Cloitre, A. Sere, R. L. Aulombard, “Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates,” Superlattices and Microstructures 36, 377–383 (2004).
    [50] M. Maunaye, and J. Lang, ”Preparation and Properties of ZnGeN2,” Mat. Res. Bull 5, 793-796 (1970).
    [51] K. Dub, C. Bekelea, C. C. Haymanc, J. C. Angusc, P. Pirouzb, K. Kash, “Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources,” Journal of Crystal Growth 310, 1057–1061 (2008).
    [52] A. Punya, and W. R. L. Lambrecht, “Quasiparticle band structure of Zn-IV-N2 compounds,” PHYSICAL REVIEW B 84, 165204-165213 (2011).
    [53] P. Ziesche, S. Kurth, J. P. Perdew, “Density functionals from LDA to GGA,” Computational Materials Science 11, 122–127 (1998).
    [54] P. C. Quayle, K. He, J. Shan, and K. Kash, “Synthesis, lattice structure, and band gap of ZnSnN2,” MRS Communications, 1 of 4 (2013).
    [55] E. Aperathitis, V. Kambilafka, M. Modreanu, “Properties of n-type ZnN thin films as channel for transparent thin film transistors,” Thin Solid Films 518, 1036–1039 (2009).
    [56] N.J. Dudney, “Solid-state thin-film rechargeable batteries,” Materials Science and Engineering B 116, 245–249 (2005).
    [57] J. G. Zhao, L. X. Yang, S. J. You, F. Y. Li, C. Q. Jin, J. Liu, “Structural stabilityofZn3N2 under high pressure,” Physica B 405, 1836–1838 (2010).
    [58] K. Kuriyama, Y. Takahashi, and F. Sunohara, “Optical band gap of Zn3N2 films,” PHYSICAL REVIEW B 48, 2781-2782 (1993).
    [59] J. Wu, J. Yan, W. Yue, and T. Li, “Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3–Ar mixture gases,” Journal of Semiconductors 33, 043001-043004 (2012).
    [60] A. H. Jayatissa, T. Wen, “Microstructure and optical properties of zinc nitride films deposited by magnetron sputtering method,” Surface & Coatings Technology 211, 163–166 (2012).
    [61] F. J. Zong, H. L. Ma, W. Liang, W. Du, X. J. Zhang, H. D. Xiao, J. Ma, F. Ji, C. S. Xue, and H. Z. Zhuang, “Thermal decomposition behavior of Zn3N2 powder,” Chin. Phys. Lett. 22, 907-910 (2005).
    [62] Y. Inoue, M. Nomiya, and O. Takai, “Physical properties of reactive sputtered tin-nitride thin films,” Vacuum 5, 673-676 (1998).
    [63] S. V. Nand, K. Ankur, K. Brijesh, M. B. Raj, “Synthesis of single phase cubic tin nitride nanoparticles by atmospheric pressure - halide vapor phase epitaxy,” Solid State Sciences 10, 569-572 (2008).
    [64]H. Min, “Theoretical Prediction of the Structure and Properties of Sn3N4 and Other Group IV Nitrides. Textbook.
    [65] I. M. Odeh, “Optical Characteristics of Amorphous Tin Nitride Thin Films
    Prepared by Ion Beam Assisted DC Magnetron Reactive Sputtering,” Jordan Journal of Physics 1, 19-29 (2008).
    [66] N. Scottia, W. Kockelmannb, J. Senkerc, St. Traûelc, and H. Jacobsa, “Sn3N4, a Tin (IV) Nitride-Syntheses and the First Crystal Structure Determination of a Binary Tin-Nitrogen Compound,” Chem. 625, 1435-1439 (1999).
    [67] K. S. Parka, Y. J. Parkb, M. K. Kima, J. T. Sona, H. G. Kima, S. J. Kim, “Characteristics of tin nitride thin-film negative electrode for thin-film microbattery,” Journal of Power Sources 103, 67–71 (2001).
    [68] M. Zervos, and A. Othonos, “Synthesis of Tin Nitride SnxNy Nanowires by Chemical Vapour Deposition,” Nanoscale Res Lett 4, 1103–1109 (2009).
    [69] S. Choi, J. Kang, J. Park, Y. C. Kang, “Tin nitride thin films fabricated by reactive radio frequency magnetron sputtering at various nitrogen gas ratios,” Thin Solid Films 571, 84–89 (2014).
    [70] M. Huang, and Y. P. Fenga, “Theoretical prediction of the structure and properties of Sn3N4,” JOURNAL OF APPLIED PHYSICS 96, 4015-017 (2004).
    [71] R. G. Gordon, D. M. Hoffman, and U. Riaz, “Low-Temperature Atmospheric Pressure Chemical Vapor Deposition of Polycrystalline Tin Nitride Thin Films,” Chem. Mater. 4, 68-71 (1992).
    [72] C. E. Kim, P. Moon, S. Kim, J. M. Myoung, H. W. Jang, J. Bang, I. Yun, “Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films,” Thin Solid Films 518, 6304–6307 (2010).
    [73] S. Chen, P. Narang, H. A. Atwater, and L. W. Wang, “Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights,” Adv. Mater. 26, 311–315 (2014).
    [74] L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N. A. Spaldin,
    and H. A. Atwater, “Structural and Optoelectronic Characterization of RF
    Sputtered ZnSnN2,” Adv. Mater. 1-5 (2013).
    [75] N. Feldberg, J. D. Aldous, P. A. Stampe, R. J. Kennedy, T. D. Veal, and S. M. Durbin, “Growth of ZnSnN2 by Molecular Beam Epitaxy,” Journal of ELECTRONIC MATERIALS 43, 884-888 (2014).
    [76] N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar, R. L. Field III, T. Y. Jen, R. S. Goldman, T. D. Veal, and S. M. Durbin, “Growth, disorder, and physical properties of ZnSnN2,” APPLIED PHYSICS LETTERS 103, 042109-042113 (2013).
    [77] A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, “Special Quasirandom Structures,” PHYSICAL REVIEW LETTERS 65, 353-356 (1990).
    [78] A. N. Fioretti, A. Zakutayev, H. Moutinho, C. Melamed, J. D. Perkins, A. G. Norman, Mowafak Al-Jassim, E. S. Toberer, and A. C. Tamboli, “Combinatorial insights into doping control and transport properties of zinc tin nitride,” J. Mater. Chem. C 3, 11017-11028 (2015).
    [79] A. N. Fioretti, E. S. Toberer, A. Zakutayev, and A. C. Tamboli, “Effects of Low Temperature Annealing on the Transport Properties of Zinc Tin Nitride,” JOURNAL OF PHOTOVOLTAICS, XX, (2015).
    [80] F. Deng, H. Cao, L. Liang, J. Li, J. Gao, H. Zhang, R. Qin, and C. Liu, “Determination of the basic optical parameters of ZnSnN2 OPTICS LETTERS 40, 1282-1285 (2015).
    [81] F. Kawamura, N. Yamada, M. Imai, and T. Taniguchi, “Synthesis of ZnSnN2 crystals via a high-pressure metathesis reaction,” Cryst. Res. Technol. 51, 220–224 (2016).
    [82] Akira Fujishima, “One and Two-dimensional Structure of Alpha-Helix and Beta-Sheet Forms of Poly(Γ-Alkine) shown by Specific Heat Measurements at Low Temperatures(1.5-20K),” Nature 238, 37-38 (1972).
    [83] A. Fujishima, X. Zhangb, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports 63, 515-582 (2008).
    [84] K. Nakataa, A. Fujishima, “TiO2 photocatalysis: Design and applications Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 169– 189 (2012).
    [85] X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, and Y. Zhu, “Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization,” Langmuir 29, 3097−3105 (2013).
    [86] G .S hengli, D. Q. Zhang, and J. C . Yua, “New Visible-Light Photocatalyst:
    CdS Quantum Dots Embedded Mesoporous TiO2,” Environ. Sci. Technol. 43, 7079–7085 (2009).
    [87] E. Tükenmez, “Tungsten Oxide Nanopowders and Its Photocatalytic Activity under Visible Light Irradiation,”
    [88] Y. Zhang, Y. Liu, and Z. L. Wang, “Fundamental Theory of Piezotronics,” Adv. Mater. XX, 1–10 (2011).
    [89] Z. L.Wang, “Progress in Piezotronics and Piezo-Phototronics,” Adv. Mater. 1-15 (2012).
    [90] M. B. Starr, J. Shi, and X. Wang, “Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials,” Angew. Chem. Int. Ed. 51, 5962 –5966 (2012).
    [91] K. S. Hong, H. Xu, H. Konishi, and X. Li, “Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water,” J. Phys. Chem. Lett. 1, 997–1002 (2010).
    [92] K. S. Hong, H. Xu, H. Konishi, and X. Li, “Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers,” J. Phys. Chem. C 116, 13045−13051 (2012).
    [93] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, “Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress,” ACS Nano 10, 2636−2643 (2016).

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE