簡易檢索 / 詳目顯示

研究生: 黃品宜
Huang, Pin-Yi
論文名稱: 以人工纖毛提升斑馬魚精子活性
Enhancement of Sperm Activation for Zebrafish using Artificial Cilia
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 斑馬魚精子活化人工纖毛主動式混合微粒子影像測速儀
外文關鍵詞: zebrafish, zebrafish sperm, artificial cilia, microfluidic
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來使用微流場技術提升脊椎動物的精子活性,對於新藥的開發有相當大的助益,如生物醫學研究上所需要的大量特定種 (specific strains) 動物模型,特別在經濟魚種的保存及孵化上具有顯著的經濟效益。而其中斑馬魚具有體型小、生長速度快、光學透明性佳且與人類基因相似性高等優越特徵,已經成為生物醫學研究脊椎動物的重要參考對象。由於實驗的長時間進行,目前多以冷凍保存配子的方式大量育殖所需用之斑馬魚魚種,藉以取得具有統計學效益的斑馬魚活體實驗數據。本研究即是以斑馬魚為對象,目的在提升魚種精子的活性,藉由主動式磁性人工纖毛的擺動進行微尺度流場控制。一字形微流道平台內嵌有直列式的磁性人工纖毛,透過圖形化編譯平台進行調控,分別討論於不同人工纖毛轉動頻率下產生的多樣流場結構,並使用微粒子影像測速儀 (micro-particle image velocimetry) 進行流場分析。本研究利用主動式微流道裝置,可成功提高冷凍後的斑馬魚精子活性,並利用影像處理以及活性分析軟體,作為活化後精子能動性 (motility) 的評估分析軟體,通過開發的微流道裝置,以人工纖毛旋轉頻率為1 Hz,轉動時間5 s,可以有效提升斑馬魚精子活性至63 %,未來尋求將此技術應用於具有高度經濟價值的魚種進行保種以及人工授精成功率的提升。

    Zebrafish is considered as an invaluable animal model which has been extensively used to envisage the vertebrae development, genetic research etc. To preserve the genetical characteristics of these animal model for future use, sperm has been cryopreserved. The cryopreserved zebrafish sperms can be activated by rapidly diluting their extracellular medium in a hyperosmotic environment through manual mixing or structured stirring. This traditional methodology of sperm activation has a poor outcome. A magnetically controlled artificial cilia based microfluidic device was developed and used towards the activation of cryopreserved zebrafish sperms. The design and characteristics of the microfluidic device were optimized for a high throughput sperm activation. Through the developed microfluidic platform, the zebrafish sperm activation can reach up to 68 % with a statistical significance (p-value <0.05), with an optimized artificial cilia’s rotation frequency of 1 Hz for 5 seconds.

    目錄 摘要 I 致謝 VII 目錄 VIII 圖目錄 XII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 斑馬魚 3 1.2.1 斑馬魚動物模型 3 1.2.2 斑馬魚精子冷凍及保存 6 1.2.3 斑馬魚精子活化 8 1.3 精子活性影響因素 10 1.3.1 滲透壓影響 10 1.3.2 流場剪率影響 12 1.3.3 流場速度影響 13 1.3.4 溫度影響 14 1.3.5 時間影響 15 1.4 人工纖毛 17 1.4.1 靜電式驅動 18 1.4.2 電磁式驅動 19 1.4.3 光學式驅動 23 1.4.4 壓電式驅動 24 1.4.5 酸鹼式驅動 26 1.5 斑馬魚精子活化方式 27 1.5.1 人字形陣列平台 27 1.5.2 連續對數平台 28 1.6 研究動機 30 1.7 研究目標 32 第二章 研究方法 33 2.1 微流道平台 33 2.1.1 微流道平台設計 33 2.1.2 微流道平台製程 34 2.2 磁場控制系統 36 2.2.1 程式方塊 38 2.2.2 PWM訊號 40 2.3 斑馬魚精子 41 2.3.1 斑馬魚精子採集 41 2.3.2 活性評估ImageJ CASA 43 2.3.3 活性評估參數校正 46 2.4 微粒子影像分析測速儀 49 2.5 統計學分析方式 53 2.6 活性提升實驗分析 54 2.6.1 活性實驗操作方式 54 2.6.2 流場分析之實驗操作 56 第三章 結果分析 57 3.1 斑馬魚精子活性分析 57 3.1.1 轉動頻率對活性實驗 57 3.1.2 轉動時間對活性實驗 60 3.1.3 不同操作的活性比較 62 3.2 活性參數分析結果 64 3.3 流場分析 66 3.3.1 轉動頻率對應流場速度 66 3.3.2 轉動頻率對應流場剪率 70 3.3.3 轉動頻率擾動面積量測 73 第四章 結論與未來展望 74 4.1 結論 74 4.2 未來展望 76 參考文獻 77

    參考文獻
    [1] H. W. Laale, "The biology and use of zebrafish, Brachydanio rerio in fisheries research," Journal of Fish Biology, vol. 10, pp. 121-173, 1977.
    [2] Z. Lele and P. Krone, "The zebrafish as a model system in developmental, toxicological and transgenic research," Biotechnology advances, vol. 14, pp. 57-72, 1996.
    [3] K. Howe, M. D. Clark, C. F. Torroja, et al., "The zebrafish reference genome sequence and its relationship to the human genome," Nature, vol. 496, pp. 498-503, 2013.
    [4] C. Chakraborty, A. R. Sharma, G. Sharma, et al., "Zebrafish: A complete animal model to enumerate the nanoparticle toxicity," Journal of Nanobiotechnology, vol. 14, p. 65, 2016.
    [5] W. Driever, D. Stemple, A. Schier, et al., "Zebrafish: genetic tools for studying vertebrate development," Trends in Genetics, vol. 10, pp. 152-159, 1994.
    [6] K. A. Helde, E. T. Wilson, C. J. Cretekos, et al., "Contribution of early cells to the fate map of the zebrafish gastrula," Science, vol. 265, pp. 517-521, 1994.
    [7] W. Driever, "Axis formation in zebrafish," Current opinion in genetics & development, vol. 5, pp. 610-618, 1995.
    [8] A. J. Hill, H. Teraoka, W. Heideman, et al., "Zebrafish as a model vertebrate for investigating chemical toxicity," Toxicological sciences, vol. 86, pp. 6-19, 2005.
    [9] M. Ruoppa and T. Nakari, "The effects of pulp and paper industry (Tervakoski Oy) waste waters on the fertilized eggs and alevins of zebrafish and on the physiology of rainbow trout," Water Science and Technology, vol. 20, p. 201, 1988.
    [10] P. Corti, S. Young, C.-Y. Chen, et al., "Interaction between alk1 and blood flow in the development of arteriovenous malformations," Development, vol. 138, pp. 1573-1582, 2011.
    [11] D. S. Park, R. A. Egnatchik, H. Bordelon, et al., "Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish," Theriogenology, vol. 78, p. 344, 2012.
    [12] J. S. Wolenski and N. H. Hart, "Scanning electron microscope studies of sperm incorporation into the zebrafish (Brachydanio) egg," Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol. 243, pp. 259-273, 1987.
    [13] A. J. Vilella, J. Severin, A. Ureta-Vidal, et al., "EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates," Genome Research, vol. 19, pp. 327-335, 2009.
    [14] C. A. MacRae and R. T. Peterson, "Zebrafish as tools for drug discovery," Nature Reviews Drug Discovery, vol. 14, pp. 721-731, 2015.
    [15] J. Steeby and J. Avery, Channel catfish broodfish and hatchery management: Southern Regional Aquaculture Center Stoneville, Mississippi, 2005.
    [16] T. Tiersch, "Process pathways for cryopreservation research, application and commercialization," Cryopreservation in Aquatic Species, vol. 2, pp. 646-671, 2011.
    [17] R. M. Tombes and B. M. Shapiro, "Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail," Cell, vol. 41, pp. 325-334, 1985.
    [18] K. H. Kho, M. Morisawa, and K. S. CHOI, "Cell signaling mechanisms of sperm motility in aquatic species," Journal of Microbiology and Biotechnology, vol. 15, pp. 665-671, 2005.
    [19] J. Cosson, "The ionic and osmotic factors controlling motility of fish spermatozoa," Aquaculture International, vol. 12, pp. 69-85, 2004.
    [20] M. Morisawa, K. Suzuki, and S. Morisawa, "Effects of potassium and osmolality on spermatozoan motility of salmonid fishes," Journal of Experimental Biology, vol. 107, pp. 105-113, 1983.
    [21] S. Oda and M. Morisawa, "Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts," Cell Motility and the Cytoskeleton, vol. 25, pp. 171-178, 1993.
    [22] H. Takai and M. Morisawa, "Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts," Journal of Cell Science, vol. 108, pp. 1175-1181, 1995.
    [23] R. K. Zimmer and J. A. Riffell, "Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction," Proceedings of the National Academy of Sciences, vol. 108, pp. 13200-13205, 2011.
    [24] T. M. El-Sherry, M. Elsayed, H. K. Abdelhafez, et al., "Characterization of rheotaxis of bull sperm using microfluidics," Integrative Biology, vol. 6, pp. 1111-1121, 2014.
    [25] A. S. l. Ginzburg, "Fertilization in fishes and the problem of polyspermy," 1968.
    [26] R. Billard and M. Cosson, "Sperm motility in rainbow trout, Parasalmo mykiss; effect of pH and temperature," Colloques de l'INRA (France). pp. 161-167, 1988.
    [27] R. Billard and M. P. Cosson, "Some problems related to the assessment of sperm motility in freshwater fish," Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol. 261, pp. 122-131, 1992.
    [28] L. Chauvaud, J. Cosson, M. Suquet, et al., "Sperm motility in turbot, Scophthalmus marimus: initiation of movement and changes with time of swimming characteristics," Environmental Biology of Fishes, vol. 43, pp. 341-349, 1995.
    [29] T. Scherr, G. L. Knapp, A. Guitreau, et al., "Microfluidics and numerical simulation as methods for standardization of zebrafish sperm cell activation," Biomedical Microdevices, vol. 17, p. 65, 2015.
    [30] M. A. Sleigh, Cilia and flagella: Academic Press, 1974.
    [31] S. Nonaka, H. Shiratori, Y. Saijoh, et al., "Determination of left–right patterning of the mouse embryo by artificial nodal flow," Nature, vol. 418, pp. 96-99, 2002.
    [32] J. M. den Toonder and P. R. Onck, "Microfluidic manipulation with artificial/bioinspired cilia," Trends in Biotechnology, vol. 31, pp. 85-91, 2013.
    [33] J. den Toonder, F. Bos, D. Broer, et al., "Artificial cilia for active micro-fluidic mixing," Lab on a Chip, vol. 8, pp. 533-541, 2008.
    [34] M. Vilfan, A. Potočnik, B. Kavčič, et al., "Self-assembled artificial cilia," Proceedings of the National Academy of Sciences, vol. 107, pp. 1844-1847, 2010.
    [35] S. Khaderi, C. Craus, J. Hussong, et al., "Magnetically-actuated artificial cilia for microfluidic propulsion," Lab on a Chip, vol. 11, pp. 2002-2010, 2011.
    [36] C. L. Van Oosten, C. W. Bastiaansen, and D. J. Broer, "Printed artificial cilia from liquid-crystal network actuators modularly driven by light," Nature Materials, vol. 8, pp. 677-682, 2009.
    [37] K. Oh, J.-H. Chung, S. Devasia, et al., "Bio-mimetic silicone cilia for microfluidic manipulation," Lab on a Chip, vol. 9, pp. 1561-1566, 2009.
    [38] L. D. Zarzar, P. Kim, and J. Aizenberg, "Bio‐inspired Design of Submerged Hydrogel‐Actuated Polymer Microstructures Operating in Response to pH," Advanced Materials, vol. 23, pp. 1442-1446, 2011.
    [39] S. Sareh, J. Rossiter, A. Conn, et al., "Swimming like algae: biomimetic soft artificial cilia," Journal of the Royal Society Interface, 2012.
    [40] C.-Y. Chen, C.-Y. Chen, C.-Y. Lin, et al., "Magnetically actuated artificial cilia for optimum mixing performance in microfluidics," Lab on a Chip, vol. 13, pp. 2834-2839, 2013.
    [41] J. G. Wilson-Leedy and R. L. Ingermann, "Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters," Theriogenology, vol. 67, pp. 661-672, 2007.
    [42] M. Barr, "Pulse width modulation," Embedded Systems Programming, vol. 14, pp. 103-104, 2001.
    [43] M. Elsayed, T. M. El-Sherry, and M. Abdelgawad, "Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J," Theriogenology, vol. 84, pp. 1367-1377, 2015.
    [44] T. L. Hedrick, "Software techniques for two-and three-dimensional kinematic measurements of biological and biomimetic systems," Bioinspiration & Biomimetics, vol. 3, p. 034001, 2008.
    [45] R. D. Keane and R. J. Adrian, "Optimization of particle image velocimeters," Proceedings of SPIE-the International Society for Optical Engineering, vol. 1404, pp. 139-159, 1990.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE