簡易檢索 / 詳目顯示

研究生: 吳典陽
Wu, Tien-Yang
論文名稱: 基於行動裝置使用者喜好的 App 推薦演算法
An App Recommendation Algorithm based on Mobile User Tendency
指導教授: 謝錫堃
Shieh, Ce-Kuen
共同指導教授: 張志標
Chang, Jyh-Biau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 32
中文關鍵詞: 行動裝置 Apps機器學習監督式隨機森林邏輯回歸Apache Spark
外文關鍵詞: Mobile Apps, Machine Learning, Supervised learning, Logistic Regression, Random Forest, Apache Spark
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在不同推薦App的方法中, 大部份是根據使用使用者下載App的記錄和使用者對於App的評分和評論進行推薦, 但使用者下載App的記錄是一個較弱的指標, 而使用者對於App的評分和評論會造成冷起始問題, 因此我們提出下載傾向的概念進行推薦, 第一步是先預測使用者的下載傾向, 當預測使用者有下載傾向時才到第二步推薦相似的App,以上的預測和推薦都是藉由監督式機器學習方法來實現, 而我們只需要收集使用者的 App列表就可以達成, 且App列表具有方便收集和高安全性的好處。
    在實驗結果中預測不同的下載傾向平均的AUC分數是0.65, 而也證明可以有效地推薦相似的App, 並且以上演算法都有高度的擴展性皆可運行在Spark平台上。

    In App recommendation, many methods are that leverage the user's App download history or their ratings and comments as the basis for App recommendations. The user's App download history is a weak indicator and the user's ratings and comments have the cold-start problem. So we propose the concept of downloading tendency ( tendency ). The first step is that predicting user's tendency of downloading the App in the near future, and then the second step is recommending the lookalike App to the user by supervised machine learning. We only need the user's App list, describing what App installed on user's mobile, which has fewer security risks and more collected conveniently.
    In our experiment, we can identify average AUC scores at 0.65 for predicting different genre tendency and prove of retrieving lookalike App effectively and our algorithm has high scalability running on Spark.

    Content Chapter 1 : Introduction 1 Chapter 2 : Backgrounds 3 2.1 Backgrounds 3 2.1.1 Spark Computing Framework 3 2.1.2 Random Forest 3 2.1.3 Logistic Regression 4 Chapter 3 : Related Works 6 3.1 Mobile App Recommender System 6 3.2 Mobile Data Access Permissions 7 Chapter 4 : Methodology 9 4.1 Approach Overview 9 4.2 Tendency Model 10 4.2.1 Feature Extraction 11 4.2.2 Feature Selection 14 4.2.3 Feature Normalization 15 4.2.4 Tendency Ground Truth Labeling 15 4.2.5 Model Learning 16 4.3 App Lookalike Model 16 4.3.1 Toy Example 17 4.3.2 Update Similar Score 19 4.4 Approach with Spark 20 Chapter 5 : Evaluation 22 5.1 Data Collection 22 5.2 Google Play App Information 23 5.3 Experiment 23 5.3.1 Performance of Tendency Model 24 5.3.2 Performance of App Lookalike Model 26 5.3.3 Scalability of Tendency Model and App Lookalike Model 27 Chapter 6 : Conclusion and Future Work 30 Chapter 7 : References 31

    [1] App Store. https:// www.appstore.com/.
    [2] Google Play. https://play.google.com/.
    [3] Apache Spark. http://spark.apache.org/.
    [4] Apache Spark MLlib. http://spark.apache.org/mllib/.
    [5] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., ... & Stoica, I. (2012, April). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation (pp. 2-2). USENIX Association.
    [6] Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., ... & Xin, D. (2016). Mllib: Machine learning in apache spark. JMLR, 17(34), 1-7.
    [7] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    [8] Walker, S. H., & Duncan, D. B. (1967). Estimation of the probability of an event as a function of several independent variables. Biometrika, 54(1-2), 167-179.
    [9] Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological), 215-242.
    [10] Yan, B., & Chen, G. (2011, June). AppJoy: personalized mobile application discovery. In Proceedings of the 9th international conference on Mobile systems, applications, and services (pp. 113-126). ACM.
    [11] Costa-Montenegro, E., Barragáns-Martínez, A. B., Rey-López, M., Mikic-Fonte, F. A., & Peleteiro-Ramallo, A. (2011). Which App? A recommender system of applications in markets by monitoring users' interaction. In 2011 IEEE International Conference on Consumer Electronics (ICCE).
    [12] Zheng, V. W., Cao, B., Zheng, Y., Xie, X., & Yang, Q. (2010, July). Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach. In AAAI (Vol. 10, pp. 236-241).
    [13] Lin, J., Sugiyama, K., Kan, M. Y., & Chua, T. S. (2013, July). Addressing cold-start in app recommendation: latent user models constructed from twitter followers. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 283-292). ACM.
    [14] Lin, J., Sugiyama, K., Kan, M. Y., & Chua, T. S. (2013, July). Addressing cold-start in app recommendation: latent user models constructed from twitter followers. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 283-292). ACM.
    [15] Review app permissions thru Android 5.9 .
    https://support.google.com/googleplay/answer/6014972.
    [16] Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of research and development, 1(4), 309-317.
    [17] Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21.
    [18] VMFive. https://vmfive.com/.

    下載圖示 校內:2019-07-24公開
    校外:2019-07-24公開
    QR CODE