| 研究生: |
曾俊豪 Tseng, Chun-Hao |
|---|---|
| 論文名稱: |
探討銀奈米粒子於改質之聚丙烯纖維表面形成機制 Study on the mechanism of silver nanoparticles on the modified PP fiber |
| 指導教授: |
陳志勇
Chen, Chun-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 電漿誘發聚合法 、PP纖維 、銀奈米粒子 、膨潤 |
| 外文關鍵詞: | GMA-IDA che, plasma-induced graft polymerization |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用質輕、價廉和兼具環保功能的PP人造纖維為基材,利用電漿誘發聚合法將纖維的表面活化並導入具有螯合性官能基的GMA-IDA高分子,形成一無機銀奈米微粒的成核誘發點。其中,紅外光光譜(FTIR)可證實GMA-IDA已成功接枝於PP纖維上,且由EA定量GMA-IDA的接枝。另外,亦使用莫耳變數法求出每莫耳的GMA-IDA可螯合2莫耳的銀離子,而由等溫吸附和吸附動力實驗可知每克的纖維約於40分鐘時可達最大銀螯合量為0.18mg/g of fiber。本實驗分別使用物理和化學方法來還原銀離子,首先,我們將PPG-IAg+纖維含浸於不同pH值的水溶液下,固定還原條件為照射波長為366nm之紫外光30分鐘(光化學還原法),由SEM和TEM觀察結果可看出纖維表面的銀粒子的平均粒徑隨著pH值的增加而減小,平均粒徑分別為:pH=2時(126.6) nm、pH=5時(52.2 nm)、pH=8時(32.4 nm)和pH=11時(16.5 nm),這是因為當水溶液的pH值增加時,GMA-IDA分子中的酸根傾向形成-COO-結構而使親水性上升,GMA-IDA被水膨潤的現象也越顯著,此時poly(GMA-IDA)分子鏈和分子鏈間彼此距離較遠,原本未能進入poly(GMA-IDA)內部螯合的銀離子可因濃度差再擴散進去內部螯和,使表面單位體積內螯合的銀離子數量變少,此時再受紫外光還原的銀奈米粒子就不易因還原的粒子密度過度集中而凝聚成較大顆粒;再來,將還原條件改於不同pH值的甲醛水溶液中還原(化學還原法),結果發現,當pH值大於5時,銀奈米粒子的粒徑仍會隨著液中pH值的上升而增加,但當pH值小至2時,甲醛水溶液的還原能力也隨之減弱,且此弱還原能力對銀奈米粒子成長的影響大於poly(GMA-IDA)分子鏈收縮的效應,反而可以得到較小粒徑的銀奈米粒子,其表面平均粒徑約為12.9nm。
A novel method for the preparation of poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAgFs) by plasma-induced graft polymerization is presented in this study. GMA-IDA chelating groups within the PPG-I fibers were the coordination sites for chelating Ag+, at which nano-sized Ag nanoparticles were grown by UV light of wavelength 366 nm and formaldehyde solution. The characteristics of PPG-I fibers with different plasma treating times are monitored by using fourier transform infrared (FT-IR) spectroscope in this study. Scanning electronic microscopy (SEM) and elemental analysis show that the grafting percentage of GMA-IDA is maximum as the plasma treating time is 3 min. Moreover, SEM and TEM microscopes reveal that with an increasing pH values in aqueous solutions, the size of Ag nanoparticles decreased from 126.6 nm to 16.5 nm under the reduction of UV light 366nm for 30 min at 25℃. However, the size of Ag nanoparticles is smallest at pH=2 by the reduction of formaldehyde solution. Additionally, TEM observations demonstrate that the Ag nanoparticles distributed more deeply as the pH value of formaldehyde solution increase which manifesting that the distance of GMA-IDA polymer chains also enlarged with the increasing pH value.
1. J. Zheng, M. S. Stevenson, R. S. Hikida, and P. G. Van Patten, J. Phys. Chem. B, 106, 1252(2002).
2. R. Patakfalvi , A. Oszko´, and I. De´ka´ny, Colloids and Surfaces A: Physicochem. Eng. Aspects, 220, 45(2003).
3. G. Carotenuto, Appl. Organometal. Chem., 15, 344(2001).
4. S. K´eki, J´. T¨or¨ok, G. De´ak, L. Dar´oczi, and M. Zsuga, J. Colloid and Interface Science, 229, 550(2000).
5. E. Stathatos, and P. Lianos, Langmuir, 16, 2398 (2000)
6. Z. Zhang, L. Zhang, S. Wang, W. Chen, and Y. Lei, Polymer, 42, 8315(2001).
7. Z. Zhang, and M. Han, J. Mater. Chem., 13, 641(2003).
8. F. Mafune´, J. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B, 104, 8333(2000).
9. M. Faraday., Philosophical Magazine, 3, 216(1857).
10. J. Turkevich, G. Kim, Science, 169, 873(1970)
11. 呂宗昕, ”次微米電子陶瓷粉體之製備”, 微粉應用技術研討會論文集, 1998
12. J. W. Mullin, “Crystallization” , Butterworth- Heinemann, 172, 1993.
13. A. C. Zettlemiyer, “ Nucleation ” , Marcel Dekker, Inc., 233, 1969.
14. 陳皇鈞譯, 陶瓷材料概論(上), 曉園出版社, 民國 76 年 12 月, 台北
15. L. Laaksonen, and R. Macgraw, Europhys. Lett., 35, 367 (1996)
16. P. Roura, and J. Fort, Journal of the Colloid and Interface Science, 272, 420 (2004)
17. X. Chang, Y. F. Li, and G. G. Zhan, Talanta, 43, 407(1996)
18. X. J. Chang, X. L. Yang, and X. J. Wei, Analytic. Chimica. Acta., 450, 231(2001)
19. B. L. Gong, Talanta, 57,89(2002)
20. M. Goto, T. Miyata, K. Uezu, and T. Kajiyama, Journal of Membrane Science, 96, 299(1994)
21. K. L. Tan, L. L. woon, H. K. Wong, and K. G. Neoh, Macromolecules, 26, 2832(1993)
22. T. Oshikiri, K. Saito, and K. Sugita, Chem. Mater., 8, 2618(1996)
23. R.G. Pearson, J. Am. Chem. Soc., 85, 3533-3539(1963).
24. C. J. King, “Separation Processes” 2nd ed. New York: Mc Graw-Hill, 1980.
25. B. S. Kim, S. T. Lim, Carbohyd. Polym., 39, 217-223(1999).
26. C. Kantipuly, S. Katragadda, A. Chow, H.D.Gesser, Talanta, 37, 491-517(1990).
27. R. A. Beauvias, S. D. Alexandratos, React. Funct. Polym., 36, 113-123(1998).
28. F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes” Berlin: Springer, 1996.
29. 孫為銀, “配位化學”, 化學與應用化學出版中心, 2004
30. G. L. Miessler, and D. A. Tarr, Inorganic Chemistry, 1991
31. P. Buffat, and J. P. Borel, Phys Rev., A13, 2287(1976)
32. Y. W. Du, J. Appl. Phys.,, 63, 4100(1988)
33. C. M. Mo, and Z. Yuan, L. D. Zhang, Nanostructured Mater., 2, 113(1993).
34. P. Ball, and L. Garwin, Nature, 355, 761(1992).
35. H.Yoneyama, Crit. Rev. Solid State Mater. Sci., 18, 69(1993).
36. D. W. Bahneman, J. Phys. Chem., 98, 1025(1994).
37. K. L. Tan, L. L. Woon, and H. K. Wong, Macromolecules, 23, 2832(1993).
38. N. Pekel, O. Guven, Colloid Polym. Sci., 577, 570(1999)
39. C. C. Wang, C. Y. Chen, and C. C. Chang, Journal of applied polymer science, 1353(2001)
40. 陳志彥, 成功大學化學工程學系博士論文, 民國91年
41. I. M. Yakutik, and G. P. Shevchenko, Surface Science, 556, 441(2004)
42. S. T. He, J. N. Yao, S. S. Xie, and S. J. Pang, Journal of Physics D: Applied Physics, 34, 3425(2001)
43. E. Stathatos. P. G. Lianos, P. K. Falaras, and A. Siokou, Langmuir, 16, 2398(2000)
44. G. O. Mallory, and J. B. Hajdu, “Electroless Plating: Fundamental And Applications”, American Electroplaters and Surface Finishers Society, 1990.