簡易檢索 / 詳目顯示

研究生: 王裕齊
Wang, Yu-Chi
論文名稱: 顯示面板業之廢IGZO靶材金屬資源再生之研究
Recovery of Metals from Spent IGZO Targets in Display Panels Industry
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 含鋅靶材溶媒萃取化學沉澱離子置換電解資源再生廢棄物處理
外文關鍵詞: Spent targets, Gallium, Indium, Hydrometallurgy, Resources recycling
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對顯示面板業中,以氧化鋅為基底之廢棄含鋅靶材(IGZO)進行金屬資源的分離及純化再生的技術開發與研究,以其中所含之銦、鎵為目的金屬。實驗主要分成三大部分,第一部分為廢棄含鋅靶材的物理前處理與酸溶浸出,藉由物理前處理的方式進行靶材鍍層(Coating layer)剝離,將鍍層粉末中銦之含量提升至約25 %,再以無機酸進行酸消化離子溶出之步驟,經酸消化處理之靶材粉末中銦、鎵金屬之溶出率可達99.5%以上。
    由於所得之浸出液為含銦、鎵與高鋅濃度鋅之三元溶液,本研究之第二部分為金屬之純化分離,主要之方法為溶媒萃取,以有機磷酸鹽類D2EHPA做為萃取劑,對銦、鎵兩目的金屬進行選擇性萃取,鋅則留於萃餘液中。根據D2EHPA對金屬離子之選擇性,採用兩階段先銦萃取再鎵萃取之階段性操作流程,實驗結果顯示,銦與鎵之萃取率均可達到99.5 %以上,且三元金屬之分離係數(Separation factor)βIn/Ga、βIn/Zn、βGa/Zn分別為35478、27412與332.9,顯示三元金屬已藉由選擇性萃取達到分離之效果。萃取後存在於有機相中之金屬離子,再藉由反萃取使其回到水溶液中以利後續的金屬再生程序,以不同濃度之鹽酸作為銦與鎵之反萃取劑,反萃效率皆可達到99.9 %以上。
    第三部分的金屬純化再生,根據產物的不同分為兩套研究步驟,第一部分為產生金屬氧化物之化學沉澱與煅燒流程,根據電位(Eh)與酸鹼值(pH)之關係圖,使用氫氧化鈉來調整溶液之酸鹼值,分別沉澱出金屬氫氧化物之固體,再藉由高溫煅燒的方式得到三氧化二銦(In2O3)、三氧化二鎵(Ga2O3)與氧化鋅(ZnO)產物,以儀器分析金屬氧化產物之純度,皆可達99.5 %以上。另一部分為產出純金屬之氧化還原置換與電解流程,利用不同金屬氧化還原電位之差異,使用活性較高的鋅粉、鋁粉作為還原劑,在還原劑過量之情況下得到較高的還原置換率,並利用銦、鎵熔點較低之特性將其與還原劑分離,得到純度約97 %以上之金屬產物。為了使二次之金屬銦、鎵資源得以回流至產業,運用電解精煉的方式提高金屬產物之純度達產業標準的4N5(99.995 %)以上。

    As the massive usage of indium and gallium nowadays, the limited metal resources and enormous amount of related waste become problems to the environment. This study is devoted to recover indium and gallium from the spent targets by hydrometallurgy. This method can be divided into two parts, the first is separation part and the second is recovery part. The separation part, which is mainly to dissolve the targets and separate the three metals apart from each other, includes acid leaching, solvent extraction and stripping. As for the recovery part after stripping, both metal oxides and metal ingots were investigated as product. The metal oxides, In2O3, Ga2O3 and ZnO, were obtained from the solution through chemical precipitation and calcination, respectively. Meanwhile, using zinc and aluminum as reducing agent to cement and recover the indium and gallium in metal state from the solution. The electrolytic refining was applied to raise the purity of the obtained indium and gallium to fit the criteria of the manufacturing materials. In this study, both the recovery efficiency of indium and gallium are over 99%. The purities of obtained metal oxides are all over 99.5% and the metal product of indium and gallium are refined to the purity over 4N5(99.995%). A method to recover indium and gallium from the e-wastes was provided to treat the related wastes contains indium, gallium and zinc. Since that, the amount of wastes can be reduced and the metal resources can be recycled for environment protection.

    目錄 中文摘要 I EXTENDED ABSTRACT III 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1 含鋅靶材(IGZO)之特性概述 4 2.1.1 氧化銦鎵鋅(IGZO) 4 2.1.2 銦之性質與資源現況 5 2.1.3 鎵之性質與資源現況 6 2.2 濕法冶金與資源化技術 7 2.2.1 濕法冶金 7 2.2.2 In與Ga之資源化技術 11 2.2.3 含鋅靶材之資源化現況 12 2.3 IGZO酸溶浸漬反應機制 13 2.3.1 浸漬反應機制種類 13 2.3.2 等溫浸漬實驗浸漬動力學 14 2.4 IGZO金屬分離純化之理論基礎 15 2.4.1 選擇性化學沉澱法 15 2.4.2 置換分離法 17 2.4.3 溶媒萃取法 19 2.5 電解精練技術 26 第三章 實驗方法與步驟 27 3.1 實驗藥品 27 3.2 實驗架構 28 3.3 實驗流程 29 3.3.1 廢IGZO靶材之預處理 29 3.3.2 酸溶浸漬 29 3.3.3 選擇性化學沉澱 30 3.3.4 置換分離 31 3.3.5 溶媒萃取 31 3.3.6 金屬及其氧化物析出 34 3.3.7 電解精煉 34 3.4 含鋅靶材與產物之特性分析 35 3.4.1 X光繞射分析儀(XRD) 35 3.4.2 X光光電子能譜儀(XPS) 35 3.4.3 掃描式電子顯微鏡(SEM)與能量色散光譜儀(EDS) 36 3.4.4 雷射粒徑分析儀(LS) 37 3.4.5 感應耦合電漿原子發射光譜儀(ICP-OES) 37 3.4.6 熱重分析儀(TGA) 38 第四章 結果與討論 39 4.1 廢IGZO靶材之前處理與特性分析 39 4.1.1 前處理程序 39 4.1.2 廢IGZO靶材之性質討論 40 4.2 廢IGZO靶材浸漬溶出 46 4.2.1 浸漬參數對浸漬效率之影響 46 4.2.2 酸溶浸漬之反應機制 50 4.3 金屬分離純化研究探討 55 4.3.1 選擇性化學沉澱法 55 4.3.2 置換分離法 56 4.3.3 溶媒萃取法 56 4.4 金屬及其化合物析出之研究探討 75 4.4.1 沉澱結晶法 75 4.4.2 置換提取法 86 4.5 電解精煉研究 92 第五章 結論 93 參考文獻 96

    參考文獻
    [1] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations,” Phys. Rev. B, vol. 75, no. 3, p. 35212, Jan. 2007.
    [2] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004.
    [3] B. V. Mistry and U. S. Joshi, “Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique,” in AIP Conference Proceedings 1731, 2016, vol. 80035, no. 2016, p. 80035.
    [4] J.-S. Park et al., “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 95, no. 1, p. 13503, Jul. 2009.
    [5] T. Matsuo, S. Mori, A. Ban, and A. Imaya, “8.3: Invited Paper: Advantages of IGZO Oxide Semiconductor,” SID Symp. Dig. Tech. Pap., vol. 45, no. 1, pp. 83–86, Jun. 2014.
    [6] G. Kim, Y. Noh, M. Choi, K. Kim, and O. Song, “Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell,” J. Korean Ceram. Soc., vol. 53, no. 1, pp. 110–115, Jan. 2016.
    [7] J. Ylä-Mella and E. Pongrácz, “Drivers and Constraints of Critical Materials Recycling: The Case of Indium,” Resources, vol. 5, no. 4, p. 34, Nov. 2016.
    [8] European Commission, “Report on Critical Raw Materials for the EU: Critical Raw Materials Profiles,” European Commission: Brussels, Belgium, 2015.
    [9] M. J. Chagnon, “Indium and Indium Compounds,” in Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.
    [10] J. F. Greber, “Gallium and Gallium Compounds,” in Ullmann’s Encyclopedia of Industrial Chemistry, no. Ref 1, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000, pp. 335–340.
    [11] European Commission, “Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials,” European Commission: Brussels, Belgium, 2010.
    [12] European Commission, “Report on Critical Raw Materials for the EU: Report of the Ad-Hoc Working Group on Defining Critical Raw Materials,” European Commission: Brussels, Belgium, 2014.
    [13] H. S. Hong, H. Jung, and S. J. Hong, “Recycling of the indium scrap from ITO sputtering waste,” Res. Chem. Intermed., vol. 36, no. 6–7, pp. 761–766, 2010.
    [14] T. Kinoshita et al., “Selective recovery of gallium with continuous counter-current foam separation and its application to leaching solution of zinc refinery residues,” Sep. Purif. Technol., vol. 78, no. 2, pp. 181–188, Apr. 2011.
    [15] H. V. T. Luong and J. C. Liu, “Flotation separation of gallium from aqueous solution - Effects of chemical speciation and solubility,” Sep. Purif. Technol., vol. 132, pp. 115–119, 2014.
    [16] Z. Bahri, B. Rezai, and E. Kowsari, “Selective separation of gallium from zinc using flotation: Effect of solution pH value and the separation mechanism,” Miner. Eng., vol. 86, pp. 104–113, 2016.
    [17] V. Tolmachev and H. Lundqvist, “Rapid separation of gallium from zinc targets by thermal diffusion,” Appl. Radiat. Isot., vol. 47, no. 3, pp. 297–299, 1996.
    [18] M. Sadeghi and L. Mokhtari, “Rapid separation of 67,68Ga from 68Zn target using precipitation technique,” J. Radioanal. Nucl. Chem., vol. 284, no. 2, pp. 471–473, 2010.
    [19] R. Dumortier, M. E. Weber, and J. H. Vera, “Removal and recovery of gallium from aqueous solutions by complexation with sodium di-(n-octyl) phosphinate,” Hydrometallurgy, vol. 76, no. 3–4, pp. 207–215, 2005.
    [20] J. Jiang, D. Liang, and Q. Zhong, “Precipitation of indium using sodium tripolyphosphate,” Hydrometallurgy, vol. 106, no. 3–4, pp. 165–169, 2011.
    [21] S. M. J. Koleini, H. Mehrpouya, K. Saberyan, and M. Abdolahi, “Extraction of indium from zinc plant residues,” Miner. Eng., vol. 23, no. 1, pp. 51–53, 2010.
    [22] A. Amato, L. Rocchetti, V. Fonti, M. L. Ruello, and F. Beolchini, “Secondary indium production from end-of-life liquid crystal displays,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 5, pp. 1–5, 2016.
    [23] L. Rocchetti, A. Amato, and F. Beolchini, “Recovery of indium from liquid crystal displays,” J. Clean. Prod., vol. 116, pp. 299–305, 2016.
    [24] A. López Díaz-Pavón, A. Cerpa, and F. J. Alguacila, “Processing of indium (III) solutions emvia/em ion exchange with Lewatit K-2621 resin,” Rev. Metal., vol. 50, no. 2, p. e010, 2014.
    [25] M. C. B. Fortes, a.H. Martins, and J. S. Benedetto, “Indium adsorption onto ion exchange polymeric resins,” Miner. Eng., vol. 16, no. 7, pp. 659–663, 2003.
    [26] M. Nakayama and H. Egawa, “Recovery of gallium (III) from strongly alkaline media using a Kelex-100-loaded ion-exchange resin,” Ind. Eng. Chem. Res., vol. 36, no. 10, pp. 4365–4368, 1997.
    [27] W. S. Chen and S. M. Huang, “The Separation of Indium and Copper from Spent Cu-In Targets,” Int. J. Appl. Ceram. Technol., vol. 13, no. 2, pp. 274–279, 2016.
    [28] M. Teramoto et al., “Separation of gallium and indium by supported liquid membranes containing 2-bromodecanoic acid as carrier: design of supported liquid membrane module based on batch permeation experiments,” Hydrometallurgy, vol. 33, no. 1–2, pp. 1–15, 1993.
    [29] K. Kondo, Y. Yamamoto, and M. Matsumoto, “Separation of indium(III) and gallium(III) by a supported liquid membrane containing diisostearylphosphoric acid as a carrier,” J. Memb. Sci., vol. 137, no. 1–2, pp. 9–15, 1997.
    [30] K. Kondo and M. Matsumoto, “Separation and concentration of indium(III) by an emulsion liquid membrane containing diisostearylphosphoric acid as a mobile carrier,” Sep. Purif. Technol., vol. 13, no. 2, pp. 109–115, 1998.
    [31] S. Virolainen, D. Ibana, and E. Paatero, “Recovery of indium from indium tin oxide by solvent extraction,” Hydrometallurgy, vol. 107, no. 1–2, pp. 56–61, 2011.
    [32] X. Li et al., “Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA,” Hydrometallurgy, vol. 156, pp. 1–5, 2015.
    [33] W.-S. Chen, S.-L. Huang, F.-C. Chang, J.-E. Chang, and Y.-N. Wang, “Separation of gallium and copper from hydrochloric acid by D2EHPA,” Desalin. Water Treat., vol. 54, no. 4–5, pp. 1452–1456, 2015.
    [34] T. Kinoshita, S. Akita, S. Nii, F. Kawaizumi, and K. Takahashi, “Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues,” Sep. Purif. Technol., vol. 37, no. 2, pp. 127–133, Jun. 2004.
    [35] S. Katsuta, M. Okai, Y. Yoshimoto, and Y. Kudo, “Extraction of Gallium(III) from Hydrochloric Acid Solutions by Trioctylammonium-based Mixed Ionic Liquids,” Anal. Sci., vol. 28, no. October, pp. 1009–1012, 2012.
    [36] K. Kondo, A. Matsuoka, and M. Matsumoto, “Mutual Separation of Gallium, Indium and Zinc Using Silica Gel Modified by a Surfactant Micelle Containing D2EHPA,” Solvent Extr. Res. Dev. Japan, vol. 21, no. 2, pp. 163–171, 2014.
    [37] K. Kondo, M. Takeda, and M. Matsumoto, “Separation of rare metals using silica gel modified with a surfactant micelle containing an extractant,” Hydrometallurgy, vol. 158, pp. 107–113, 2015.
    [38] W. I. Mortada, I. M. Kenawy, and M. M. Hassanien, “A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples,” Anal. Methods, vol. 7, no. 5, pp. 2114–2120, 2015.
    [39] A. M. Alfantazi and R. R. Moskalyk, “Processing of indium: a review,” Miner. Eng., vol. 16, no. 8, pp. 687–694, Aug. 2003.
    [40] Z. Zhao, Y. Yang, Y. Xiao, and Y. Fan, “Recovery of gallium from Bayer liquor: A review,” Hydrometallurgy, vol. 125–126, pp. 115–124, 2012.
    [41] C. Licht, L. T. Peiró, and G. Villalba, “Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles,” J. Ind. Ecol., vol. 19, no. 5, pp. 890–903, Oct. 2015.
    [42] A. N. Løvik, E. Restrepo, and D. B. Müller, “Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium–Aluminum Example,” Environ. Sci. Technol., vol. 50, no. 16, pp. 8453–8461, Aug. 2016.
    [43] A. Yoshimura, I. Daigo, and Y. Matsuno, “Global Substance Flow Analysis of Indium,” Mater. Trans., vol. 54, no. 1, pp. 102–109, 2013.
    [44] M. Ueberschaar, S. J. Otto, and V. S. Rotter, “Challenges for critical raw material recovery from WEEE – The case study of gallium,” Waste Manag., vol. 60, no. 4, pp. 534–545, Feb. 2017.
    [45] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hiranon, and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,” Science, vol. 300, pp. 1269–1272, May 2003.
    [46] D.-Y. Cho et al., “Local structure and conduction mechanism in amorphous In–Ga–Zn–O films,” Appl. Phys. Lett., vol. 94, no. 11, p. 112112, Mar. 2009.
    [47] W.-T. Chen, H.-W. Hsueh, H.-W. Zan, and C.-C. Tsai, “Light-Enhanced Bias Stress Effect on Amorphous In-Ga-Zn-O Thin-film Transistor with Lights of Varying Colors,” Electrochem. Solid-State Lett., vol. 14, no. 7, p. H297, 2011.
    [48] S.-K. Jeong, M.-H. Kim, S.-Y. Lee, H. Seo, and D.-K. Choi, “Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping.,” Nanoscale Res. Lett., vol. 9, no. 1, p. 619, 2014.
    [49] H. W. Zan, W. W. Tsai, C. H. Chen, and C. C. Tsai, “Effective mobility enhancement by using nanometer dot doping in amorphous IGZO thin-film transistors,” Adv. Mater., vol. 23, no. 37, pp. 4237–4242, 2011.
    [50] J. Y. Bak et al., “Origin of Degradation Phenomenon under Drain Bias Stress for Oxide Thin Film Transistors using IGZO and IGO Channel Layers.,” Sci. Rep., vol. 5, p. 7884, 2015.
    [51] J. Meija et al., “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem., vol. 88, no. 3, pp. 265–291, 2016.
    [52] J. R. De Laeter et al., “Atomic weights of the elements. Review 2000 (IUPAC Technical Report),” Pure Appl. Chem., vol. 75, no. 6, p. 785, Jan. 2003.
    [53] U.S. Geological Survey, “Mineral Commodity Summaries 2013,” 2013.
    [54] U.S. Geological Survey, “Mineral Commodity Summaries 2014,” 2014.
    [55] U.S. Geological Survey, “Mineral Commodity Summaries 2015,” 2015.
    [56] U.S. Geological Survey, “Mineral Commodity Summaries 2016,” 2016.
    [57] U.S. Geological Survey, “Mineral Commodity Summaries 2017,” 2017.
    [58] A. C. Tolcin, “Minerals Yearbook 2015 Indium,” no. October, 2016.
    [59] T.-C. Chang, F.-C. Yen, and W.-H. Xu, “Substance Flow Analysis of Indium in Taiwan,” Mater. Trans., vol. 56, no. 9, pp. 1573–1578, 2015.
    [60] B. W. Jaskula, “Minerals Yearbook 2014 Gallium,” no. October, 2016.
    [61] TES-AMM Singapore Engineering Department, F.C. Liew, "Pyrometallurgy Versus Hydrometallurgy", Published April 2008
    [62] D. S. Smit, “The Leaching Behaviour of A Ni-Cu-Co Sulphide Ore in An Oxidative Pressure-Acid Medium,” Master’s thesis, Potchefstroomse Universiteit vir Christelike Hoer Onderwys, 2001.
    [63] K. Takeshita, K. Watanabe, Y. Nakano, and M. Watanabe, “Solvent extraction separation of Cd(II) and Zn(II) with the organophosphorus extractant D2EHPA and the aqueous nitrogen-donor ligand TPEN,” Hydrometallurgy, vol. 70, no. 1–3, pp. 63–71, Jul. 2003.
    [64] Y. Baba, M. Iwakuma, and H. Nagami, “Extraction Mechanism for Copper(II) with 2-Hydroxy-4- n -octyloxybenzophenone Oxime,” Ind. Eng. Chem. Res., vol. 41, no. 23, pp. 5835–5841, Nov. 2002.
    [65] M. Filiz, N. A. Sayar, and A. A. Sayar, “Extraction of cobalt(II) from aqueous hydrochloric acid solutions into alamine 336–m-xylene mixtures,” Hydrometallurgy, vol. 81, no. 3–4, pp. 167–173, Mar. 2006.
    [66] J. Yang, T. Retegan, and C. Ekberg, “Indium recovery from discarded LCD panel glass by solvent extraction,” Hydrometallurgy, vol. 137, pp. 68–77, 2013.
    [67] K. Xu, T. Deng, J. Liu, and W. Peng, “Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation,” Hydrometallurgy, vol. 86, no. 3–4, pp. 172–177, 2007.
    [68] S. Nusen, T. Chairuangsri, Z. Zhu, and C. Y. Cheng, “Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid,” Hydrometallurgy, vol. 160, pp. 137–146, 2016.
    [69] B. Gupta, A. Deep, and P. Malik, “Liquid-liquid extraction and recovery of indium using Cyanex 923,” Anal. Chim. Acta, vol. 513, no. 2, pp. 463–471, 2004.
    [70] B. Gupta, N. Mudhar, Z. Begum I, and I. Singh, “Extraction and recovery of Ga(III) from waste material using Cyanex 923,” Hydrometallurgy, vol. 87, no. 1–2, pp. 18–26, 2007.
    [71] I. M. Ahmed, Y. A. El-Nadi, and N. E. El-Hefny, “Extraction of gallium(III) from hydrochloric acid by Cyanex 923 and Cyanex 925,” Hydrometallurgy, vol. 131–132, pp. 24–28, 2013.
    [72] B. Gupta, N. Mudhar, and I. Singh, “Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272),” Sep. Purif. Technol., vol. 57, no. 2, pp. 294–303, 2007.
    [73] F. J. Alguacil, “Solvent extraction of indium (III) by LIX 973N,” Hydrometallurgy, vol. 51, no. 1, pp. 97–102, 1999.
    [74] M. S. Lee, J. G. Ahn, and E. C. Lee, “Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA,” Hydrometallurgy, vol. 63, no. 3, pp. 269–276, 2002.
    [75] H. N. Kang, J.-Y. Lee, and J.-Y. Kim, “Recovery of indium from etching waste by solvent extraction and electrolytic refining,” Hydrometallurgy, vol. 110, no. 1–4, pp. 120–127, Dec. 2011.
    [76] Y.-S. Zimmermann et al., “Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction,” Environ. Sci. Technol., vol. 48, no. 22, pp. 13412–13418, Nov. 2014.
    [77] S. Nishihama, T. Hirai, and I. Komasawa, “Separation and recovery of gallium and indium from simulated zinc refinery residue by liquid-liquid extraction,” Ind. Eng. Chem. Res., vol. 38, no. 3, pp. 1032–1039, 1999.
    [78] V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi, “A shrinking particle-shrinking core model for leaching of a zinc ore containing silica,” Int. J. Miner. Process., vol. 93, no. 1, pp. 79–83, 2009.
    [79] J. H. Yao, X. H. Li, and Y. W. Li, “Study on indium leaching from mechanically activated hard zinc residue,” J. Min. Metall. Sect. B Metall., vol. 47, no. 1, pp. 63–72, 2011.
    [80] N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Natl. Inst. Adv. Ind. Sci. Technol. Tokyo, no. 419, p. 285, 2005.
    [81] R. Dotzer, 1963, “Method for producing gallium, particularly for semiconductor purposes,” U.S. Patent No. 3170857.
    [82] W. Westwood, J. James MacGregor, and J. Blunden Payne, 1975, “Recovery of Gallium,” U.S. Patent No. 4029499.
    [83] E. A. Vasil’ev, a. B. Darintseva, and S. S. Naboichenko, “Experimental investigations of cementation of indium,” Russ. J. Non-Ferrous Met., vol. 51, no. 4, pp. 268–272, Aug. 2010.
    [84] M. Karavasteva, “The effect of magnesium and zinc on indium cementation kinetics and deposit morphology in the presence of and without nonylphenylpolyethylene glycol,” Hydrometallurgy, vol. 150, pp. 47–51, 2015.
    [85] D. S. Flett, “Solvent extraction in hydrometallurgy: The role of organophosphorus extractants,” J. Organomet. Chem., vol. 690, no. 10, pp. 2426–2438, 2005.
    [86] T. Nakamura, A. Sakai, S. Nishihama, and K. Yoshizuka, “Solvent Extraction of Indium, Gallium, and Zinc Ions with Acidic Organophosphates having Bulky Alkyl Groups,” Solvent Extr. Ion Exch., vol. 27, no. 4, pp. 501–512, 2009.
    [87] C. Lupi and D. Pilone, “In(III) hydrometallurgical recovery from secondary materials by solvent extraction,” J. Environ. Chem. Eng., vol. 2, no. 1, pp. 100–104, 2014.
    [88] T. Sato and K. Sato, “Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds,” Hydrometallurgy, vol. 30, no. 1–3, pp. 367–383, 1992.
    [89] T. Sato, “The Extraction of Indium(III), Lanthanum(III) and Bismuth(III) from Sulphuric Acid Solutions by Di-(2-Ethylhexyl)-phosphoric Acid,” J. Inorg. Nucl. Chem., vol. 3, no. Ill, pp. 1485–1488, 1975.
    [90] A. Boualia, A. Mellah, and A. Silem, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 1. Uranyl nitrate solution,” Hydrometallurgy, vol. 24, no. 1, pp. 1–9, Jan. 1990.
    [91] A. Silem, A. Boualia, and A. Mellah, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 2. Industrial phosphoric acid,” Hydrometallurgy, vol. 24, no. 1, pp. 11–17, Jan. 1990.
    [92] H. J. Lee, J. H. Song, Y. S. Yoon, T. S. Kim, K. J. Kim, and W. K. Choi, “Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption,” Sensors Actuators, B Chem., vol. 79, no. 2–3, pp. 200–205, 2001.
    [93] L. Cademartiri et al., “Electrical Resistance of AgTS–S(CH2)n−1CH3 // Ga2O3 / EGaIn Tunneling Junctions,” J. Phys. Chem. C, vol. 116, no. 20, pp. 10848–10860, May 2012.
    [94] T.-C. Li, C.-J. Chung, and J.-F. Lin, “Effective Improvements in Microstructure and Electrical Properties of the IGZO Films by Sputtering Angles,” Int. J. Appl. Ceram. Technol., vol. 13, no. 3, pp. 469–479, May 2016.
    [95] D. Das and P. Mondal, “Low temperature grown ZnO:Ga films with predominant c-axis orientation in wurtzite structure demonstrating high conductance, transmittance and photoluminescence,” RSC Adv., vol. 6, no. 8, pp. 6144–6153, 2016.
    [96] S. V Gladyshev, R. A. Abdulvaliev, K. O. Beisembekova, and G. Sarsenbay, “Study of Gallium Plating of Metal Electrodes,” J. Mater. Sci. Chem. Eng., vol. 1, no. 5, pp. 39–42, 2013.
    [97] W. M. Haynes, “CRC Handbook of Chemistry and Physics,” 97th ed., 2016, p. 5–178.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE