簡易檢索 / 詳目顯示

研究生: 蕭永靖
Xiao, Yong-Jing
論文名稱: 利用類-Fabry-Perot頻譜之光纖光柵結合實數型基因演算法量測任意應變分佈
Measurement of Arbitrary Strain Profiles by Fiber Bragg Gratings in Fabry-Perot-like Spectrums with Real-coded Genetic Algorithm
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 76
中文關鍵詞: 光柵應變
外文關鍵詞: Grating, Strain
相關次數: 點閱:54下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在這篇論文中,我們將提出一些新的方法,去達成任意應變分佈的量測,主要是利用光纖光柵間的類-Fabry-Perot的效應造成反射頻譜的變化(不同反射頻譜對應到不同任意應變分佈),接下來使用實數型基因演算法分析反射頻譜,逆向地求得光纖光柵長度上任意應變的分佈。
      我們提出的方法可精確的重建應變,而不受限於應變分佈的型式及光纖光柵的長度,而可達成量測任意應變的分佈。我們藉著重建光纖光柵上非單調應變分佈,來驗證這些技術的可行性及精確性;這些應變包括:定值應變分佈、線性梯度應變分佈、不連續應變分佈形式。

      In this thesis we will propose that the methods of arbitrary strain distribution sensing with real-code genetic algorithm to analyze the reflection spectrums of Fabry-Perot-like of fiber Bragg gratings. The arbitrary strain distribution along the fiber Bragg gratings is recovered inversely from the Fabry-Perot-like reflective spectrum using the genetic algorithm optimization process.
      The proposed methods permit accurate strain reconstruction with no restrictions on the applied strain profile or on the grating length. We demonstrate the validity and accuracy of these techniques by reconstructing the strain distribution along the grating with nonmonotonic strain profile, which includes: a constant strain distribution, linearly gradient strain, and strain discontinuities.

    1.Introduction……………………………………………1 2.Fiber Bragg Grating Theory…………………………………5 2-1 Properties of fiber Bragg gratings……………………………5 2-1.1 Simple fiber Bragg grating ……………………………5 2-1.2 Uniform fiber Bragg grating……………………………8 2-1.3 Strain-temperature cross sensitivity of fiber Bragg gratings………10 2-1.4 Apodization of fiber Bragg gratings ………………………13 2-1.5 Chirped fiber Bragg gratings……………………………15 2-1.6 Phase shift fiber Bragg gratings…………………………17 2-2 Coupled-mode theory and T-matrix method………………………19 3.Fiber Bragg-Grating-Based Fabry-Perot filter and Real-Code Genetic Algorithm 24 3-1 Bragg-grating-based Fabry-Perot cavity ………………………24 3-2 The Real-code Genetic Algorithm ……………………………30 3-3 Analysis model ………………………………………32 4.Measurement of arbitrary strain profiles by fiber Bragg gratings in Fabry-Perot-like spectrums with real-coded genetic algorithm ……………40 4-1 Arbitrary strain distribution sensing method with real-code genetic algorithm by using a linearly chirped fiber Bragg grating partially embedded in structure………………………………………………40 4-2 Arbitrary strain distribution sensing method with real-code genetic algorithm by using Fabry-Perot sensor formed between a linearly chirped FBG and a uniform FBG…………………………………………………47 4-3 Arbitrary strain distribution sensing method with real-code genetic algorithm and two fiber Bragg gratings …………………………………55 4-4 Arbitrary temperature distribution sensing method with real-code genetic algorithm by using Fabry-Perot sensor formed between a linearly chirped FBG and a uniform FBG ……………………………………………65 5.Conclusion ……………………………………………70 References ……………………………………………71

    [1] M. A. Davis, D. G. Bellemore, M. A. Pentnam, and D. A. Kersey, “Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability”, Electron. Lett. 32, 1393-4, 1996.

    [2] E. J. Friebele, C. G. Askins, M. A. Putnam, A. A. Jr Fosha, J Jr. Florio,R. P. Donti, and R. G. Blosser, “Distributed strain sensing with fiber Bragg grating arrays embedded in composites ”, Electron. Lett. 30, 1784-4, 1994.

    [3] S. Huang, M. M. Ohn, M. LeBlanc, R. Lee, and R. M. Measures, “Fiber optic intra-grating distributed strain sensor,” in Proc. 1994 Conf. Distrib. Multiplexed Fiber Optic Sensors IV, San Diego, CA, vol. 2294, 81-92, 1994.

    [4] S. Huang, M. M. Ohn, M LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg gratings,” Smart Mater. Struct. 7, 248-256, 1998.

    [5] Jose Azana, and Miguel A. Muriel, “Reconstructing arbitrary strain distributions within fiber gratings by time-frequency signal analysis,” Optics Letters, 25, 698-700, 2000.

    [6] Federico Casagrande, Paola Crespi, Anna Maria, Alfredo Lulli, Robert P. Kenny, and Maurice P. Whelan, “From the reflected spectrum to the properties of a fiber Bragg grating: a genetic algorithm approach with application to distributed strain sensing,” Applied Aptics, 41, 5238-44, 2002.

    [7] Yu-Lung Lo, and Hsu-Chih Cheng, “Arbitrary strain distribution sensing method with real-code genetic algorithm by using two fiber Bragg gratings,” OPT 2003 Proceedings II FC3-7, 248-50.

    [8] D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics. 20, 440-4, 1981.

    [9] P. St. J. Russell, J. L. Archambault and L. Reekie, “Fiber gratings ,” Physics World, October, 41-6, 1993.

    [10] G. Meltz and W. W. Morey,“ Bragg grating formation and germanosilicate fiber photosensitivity,”International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Quebec City, Quebec, May 10-11, Proceedings SPIE, 1516, 185-99, 1991.

    [11] J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson and L. E. Erickson, “Apodisation of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency,” Electronics Letters, 31, 222-3, 1995.

    [12] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Optics Letters, 12, 847-9, 1987.
    [13] K. C. Byron, K. Sugden, Y. Bircheno, and I. Bennion, ”Fabrication of chirped Bragg gratings in photosensitive fibre,” Electronics Letters, 29, 1659-60, 1993.

    [14] K. Sugden, I. Bennion, A. Molony and N. J. Copner, “Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure,” Electronics Letters, 30, 440-2, 1994.

    [15] R. Kashyap, P. F. Mckee, R. J. Campbell and D. L. Williams, “Novel method of producing all fibre photoinduced chirped gratings,” Electronic Letters, 30, 996-7, 1994.

    [16] W. W. Morey, G. A. Ball and G. Meltz, “Photoinduced Bragg gratings in optical fibers,” Optics and Photonics News, Optical Society of America, February, 8-14, 1994.

    [17] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Van Nostrand Reinhold, New York, Chapter 7, 1993.

    [18] R. C. Alferness, et al, “Narrowband grating resonator filters in InGaAsP/InP waveguides,”Applied Physics Letters, 49, 125-7, 1986.

    [19] R. Kashyap, P. F. Mckee and D. Armes, “UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase mask,” Electronics Letters, 30, 1977-8, 1994.

    [20] J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electronics Letters, 30, 1977-8, 1994.

    [21] D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Optics Communications, 127, 200-4, 1996.

    [22] A. Othonos and K. Kali, “Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing”, Artech House, 1999.

    [23] M. Yamada and K. Sakuda, “Analysis of almost periodic distributed feedback slab waveguides via a fundamental matrix approach, ”Appl. Opts. 26(16), 3474-8, 1987.

    [24] A. Yariv, “Coupled-mode theory for guided-wave optics,”IEEE Journal of Quantum Electrics, QE-9, 919-33, 1973.

    [25] A. D. Kersey, M. A. Davis et. al, “Fiber grating sensors ,”IEEE Journal of Lightwave Technology, 15, 1442-63, 1997.

    [26] S. Legoubin, M. Douay, P. Bernage and P. Niay, “Free spectral range variations of grating-based Fabry-Perot filters phtowritten in optical fibers, ”J. Opt. Soc. Am. A, 12, 8, 1687-93, 1995.

    [27] G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, S. B. Poole, IEEE Photonics Tech. Lett. 7, 1, 78-80 , 1995.

    [28] C. G. Askins, T. E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “fiber Bragg reflectors prepared by a single excimer pulse, ”Opt. Lett. 17, 833-5, 1992.

    [29] W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres, ”Opt. Commun. 101, 85-91, 1993.

    [30] W. X. Xie, P. Niay, P. Bernage, M. Douay, and J. F. Bayon et al , “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers,”Opt. Commun. 104, 185-195, 1994.

    [31] J. L. Archambault, L. Reekie, and P. St. J. Russel, “High reflectivity and narrow band width fibre gratings written by single excimer pulse,”Electron. Lett. 21, 28-29, 1993.

    [32] K. O. Hill,“Aperiodic distributed-parameter waveguides for integrated optics,”Appl. Opt. 13, 1853-6, 1974.

    [33] M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,”Appl. Opt. 26, 3474-8, 1987.

    [34] C. B. Lucasius and G. Kateman, “Applications of genetic algorithms in chemometrics,”Proc. of the Third International Conference on Conference on Genetic algorithms, 170-6, 1989.

    [35] L. Davis, “Adapting Operator Probabilities in Genetic Algorithms,”Proc. of the Third International Conference on Genetic algorithms, 61-9, 1989.

    [36] A. Wright, “Genetic Algorithms of real parameter Optimization, Foundations of Genetic Algorithms 1,”G. J. E. Rawlin (Ed), 205-218, 1991.

    [37] C. D. Butter and G. B. Hocker, “Fiber optics strain gauge, ”Appl. Opt. 17, 2867-9, 1978.

    [38] Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, New York: Springer-Verlag, 1992.

    下載圖示 校內:2005-07-20公開
    校外:2005-07-20公開
    QR CODE