簡易檢索 / 詳目顯示

研究生: 吳蔚航
Wu, Wei-Hang
論文名稱: 探討果蠅幼蟲眼盤中地毯膠細胞的功能
Characterization of carpet glia function in the Drosophila larval eye
指導教授: 劉雅心
Liu, Ya-Hsin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 30
中文關鍵詞: 眼盤神經系統基因間交互作用
外文關鍵詞: eye disc, nervous system, genetic interaction.
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經系統主要由神經細胞與膠細胞這兩種細胞組成,有別於神經細胞,膠細胞在分化出來後通常需要進行移動來行使它們的完整功能。果蠅眼盤內有一種膠細胞稱為地毯膠細胞,他們的細胞膜大且薄,從眼盤後端往前延伸至眼盤的一半處,分布於感光神經元與多數視覺基底膠細胞之間。先前使眼盤內地毯膠細胞凋亡的實驗暗示了地毯膠細胞對其他視覺基底膠細胞的移動有調控能力。為進一步了解地毯膠細胞調控其他膠細胞移動的機制,我藉由基因表達分析篩選出果蠅幼蟲時期表現在地毯膠細胞的基因,觀察了部份基因在眼盤內的表現位置,並且使用核酸干擾技術降低地毯膠細胞內一系列基因的表現量,發現在這些基因表現量降低的狀態下眼盤主要出現兩種突變型:(1)地毯膠細胞本身的型態受到影響,(2)其他視覺基底膠細胞的數量以及分布方式與原本不同。這些在地毯膠細胞內表現量下降而造成地毯膠細胞型態及功能改變的基因主要屬於表皮生長因子受體傳遞路徑與細胞黏合分子這兩大類。

    Nervous system is made out of two major cell types, neuron and glial cells. Different from neurons, glial cells generally leave their place of birth and migrate to positions where they can exercise their full function. One of the retinal basal glia cells (RBG) is carpet glia. There are only two carpet glia in one eye disc whose cell membrane are wide and flat and they extend their membrane anteriorly. They are thought to regulate migration of other glia cells in eye disc because ablating carpet glia results in overmigration of other RBG. In order to study how carpet glia interact with others RBG, I selected some genes from the expression profile of carpet glia and observed theirs expression in eye disc. Then I knocked down the expression of some genes in carpet glia by RNAi. By down-regulating of these genes in carpet glia, I found two main mutant phenotypes: 1) morphology of carpet glia is affected, 2) cell number of retinal basal glia is reduced in the eye disc. These knock-down genes which cause the above phenotypes are components of growth factor receptor signaling pathway and cell adhesion molecules.

    中文摘要 I 致謝 VI 目錄 1 縮寫表 3 前言 4 I 神經元與膠細胞組成神經系統 4 II 果蠅複眼的發育 4 III 膠細胞的分化 5 IV 幼蟲時期眼盤內的膠細胞 5 V 眼盤中神經細胞與膠細胞的相互作用 6 VI 地毯膠細胞 6 VII 研究目的 7 材料與方法 8 I 果蠅株來源 8 II 果蠅的雜交 9 III. 免疫染色 9 IV. 螢光圖 9 實驗結果 10 I. 地毯膠細胞座落在眼盤的後端並且將細胞膜向前端延伸 10 II. 表現在眼盤內基因的觀察 10 III. 降低地毯膠細胞特定基因表現量使眼盤產生不同的型態變化 11 III A. 抑制Rho1改變地毯膠細胞的型態 11 III B. 抑制wnd的表現使地毯膠細胞細胞膜無法向前端推進,或使細胞核過度推進 12 III C. 抑制rab4與ple的表現使地毯膠細胞的型態改變 12 III D. 抑制Socs36E、Gbp1與Sema5c的表現使眼盤內RBG的數量減少 13 III E. 抑制Kibra的表現使眼盤中RBG的分布鬆散 14 討論 15 I. kay和ptc表現在眼盤中的地毯膠細胞 15 II. 地毯膠細胞細胞核的座落位置與細胞膜的擴展沒有明顯關係 15 III. 抑制地毯膠細胞某些基因的表現使其他膠細胞進入眼盤的數量減少,或分布改變 15 IV. 抑制某些基因影響地毯膠細胞進入眼盤,以及在眼盤內移動的能力 16 V. 基因的相互關係 17 參考文獻 19 附圖 22 圖一、地毯膠細胞座落在眼盤的後端並且將細胞膜向前端延伸 23 圖二、表現在眼盤內的基因 24 圖三、抑制Rho1的表現改變地毯膠細胞的移動 26 圖四、抑制wnd的表現使地毯膠細胞細胞膜無法向前端推進,或使細胞核過度推進 27 圖五、抑制ple與rab4的表現使地毯膠細胞的型態改變 28 圖六、抑制Socs36E, Gbp1與Sema5c的表現使眼盤中RBG的數量減少 29 圖七、抑制Kibra的表現使眼盤中RBG的分布鬆散 30

    1. Xiong WC, Montell C. Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron. 1995;14(3):581-90.
    2. Sonnenfeld MJ, Jacobs JR. Mesectodermal cell fate analysis in Drosophila midline mutants. Mechanisms of development. 1994;46(1):3-13.
    3. Klambt C. Modes and regulation of glial migration in vertebrates and invertebrates. Nat Rev Neurosci. 2009;10(11):769-79.
    4. Hosoya T, Takizawa K, Nitta K, Hotta Y. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell. 1995;82(6):1025-36.
    5. Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C. Organization and function of the blood-brain barrier in Drosophila. J Neurosci. 2008;28(3):587-97.
    6. Yuva-Aydemir Y, Klambt C. Long-range signaling systems controlling glial migration in the Drosophila eye. Dev Neurobiol. 2011;71(12):1310-6.
    7. Silies M, Yuva Y, Engelen D, Aho A, Stork T, Klambt C. Glial cell migration in the eye disc. J Neurosci. 2007;27(48):13130-9.
    8. Edenfeld G, Stork T, Klambt C. Neuron-glia interaction in the insect nervous system. Curr Opin Neurobiol. 2005;15(1):34-9.
    9. Chotard C, Leung W, Salecker I. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron. 2005;48(2):237-51.
    10. Rangarajan R, Gong Q, Gaul U. Migration and function of glia in the developing Drosophila eye. Development (Cambridge, England). 1999;126(15):3285-92.
    11. Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA. Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol. 2012;520(10):2067-85.
    12. Adamson AL, Chohan K, Swenson J, LaJeunesse D. A Drosophila model for genetic analysis of influenza viral/host interactions. Genetics. 2011;189(2):495-506.
    13. LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC physiology. 2010;10:14.
    14. Cerrato A, Parisi M, Santa Anna S, Missirlis F, Guru S, Agarwal S, et al. Genetic interactions between Drosophila melanogaster menin and Jun/Fos. Developmental biology. 2006;298(1):59-70.
    15. Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, et al. A genome-wide resource for the analysis of protein localisation inDrosophila. eLife. 2016;5.
    16. Shyamala BV, Bhat KM. A positive role for patched-smoothened signaling in promoting cell proliferation during normal head development in Drosophila. Development (Cambridge, England). 2002;129(8):1839-47.
    17. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81(1):53-62.
    18. Ng J, Nardine T, Harms M, Tzu J, Goldstein A, Sun Y, et al. Rac GTPases control axon growth, guidance and branching. Nature. 2002;416(6879):442-7.
    19. Sepp KJ, Auld VJ. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development (Cambridge, England). 2003;130(9):1825-35.
    20. Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB, et al. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. eLife. 2016;5.
    21. Neckameyer W, O'Donnell J, Huang Z, Stark W. Dopamine and sensory tissue development in Drosophila melanogaster. Journal of neurobiology. 2001;47(4):280-94.
    22. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5(2):121-32.
    23. Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science (New York, NY). 2002;296(5573):1653-5.
    24. Li J, Li W, Calhoun HC, Xia F, Gao FB, Li WX. Patterns and functions of STAT activation during Drosophila embryogenesis. Mechanisms of development. 2003;120(12):1455-68.
    25. Jinks TM, Polydorides AD, Calhoun G, Schedl P. The JAK/STAT signaling pathway is required for the initial choice of sexual identity in Drosophila melanogaster. Molecular cell. 2000;5(3):581-7.
    26. Iwaki DD, Lengyel JA. A Delta-Notch signaling border regulated by Engrailed/Invected repression specifies boundary cells in the Drosophila hindgut. Mechanisms of development. 2002;114(1-2):71-84.
    27. Bach EA, Vincent S, Zeidler MP, Perrimon N. A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics. 2003;165(3):1149-66.
    28. Tsuzuki S, Ochiai M, Matsumoto H, Kurata S, Ohnishi A, Hayakawa Y. Drosophila growth-blocking peptide-like factor mediates acute immune reactions during infectious and non-infectious stress. Scientific reports. 2012;2:210.
    29. Koyama T, Mirth CK. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation. PLoS biology. 2016;14(2):e1002392.
    30. Rollmann SM, Yamamoto A, Goossens T, Zwarts L, Callaerts-Vegh Z, Callaerts P, et al. The early developmental gene Semaphorin 5c contributes to olfactory behavior in adult Drosophila. Genetics. 2007;176(2):947-56.
    31. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N. Kibra Is a Regulator of the Salvador/Warts/Hippo Signaling Network. Developmental Cell. 2010;18(2-3):300-8.
    32. Poon CL, Mitchell KA, Kondo S, Cheng LY, Harvey KF. The Hippo Pathway Regulates Neuroblasts and Brain Size in Drosophila melanogaster. Curr Biol. 2016;26(8):1034-42.
    33. Reddy B, Irvine KD. Regulation of Drosophila glial cell proliferation by Merlin-Hippo signaling. Development (Cambridge, England). 2011;138(23):5201-12.
    34. Stec W, Vidal O, Zeidler MP. Drosophila SOCS36E negatively regulates JAK/STAT pathway signaling via two separable mechanisms. Molecular Biology of the Cell. 2013;24(18):3000-9.
    35. Li M, Mukasa A, Inda MM, Zhang J, Chin L, Cavenee W, et al. Guanylate binding protein 1 is a novel effector of Egfr-driven invasion in glioblastoma. The Journal of experimental medicine. 2011;208(13):2657-73.
    36. Chen D-Y, Li M-Y, Wu S-Y, Lin Y-L, Tsai S-P, Lai P-L, et al. The Bro1-domain-containing protein Myopic/HDPTP coordinates with Rab4 to regulate cell adhesion and migration. Journal of Cell Science. 2012;125(20):4841-52.
    37. Wilson KE, Yang N, Mussell AL, Zhang J. The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes. 2016;7(6).
    38. Evers EE, Zondag GCM, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, et al. Rho family proteins in cell adhesion and cell migration. European Journal of Cancer. 2000;36(10):1269-74.
    39. Issigonis M, Tulina N, de Cuevas M, Brawley C, Sandler L, Matunis E. JAK-STAT Signal Inhibition Regulates Competition in the Drosophila Testis Stem Cell Niche. Science (New York, NY). 2009;326(5949):153-6.
    40. Matsumoto H, Tsuzuki S, Date-Ito A, Ohnishi A, Hayakawa Y. Characteristics common to a cytokine family spanning five orders of insects. Insect biochemistry and molecular biology. 2012;42(6):446-54.
    41. McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ. Multiple Egfr ligands participate in guiding migrating border cells. Developmental biology. 2006;296(1):94-103.
    42. Xiao Q, Du Y, Wu W, Yip HK. Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury. Experimental neurology. 2010;221(2):353-66.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE