簡易檢索 / 詳目顯示

研究生: 周明昌
Chou, Ming-Chang
論文名稱: 呼吸式直接甲醇燃料電池設計之研究
Studies on the Air-Breathing Direct Methanol Fuel Cell Design
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 呼吸式直接甲醇燃料電池微小型快速成型技術
外文關鍵詞: miniature, direct methanol fuel cell, rapid prototyping technology, air-breathing
相關次數: 點閱:128下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   燃料電池朝向微小型與呼吸式兩種型態設計,近幾年已成為國際各大型研發機構研究電池堆的主要方向。直接甲醇燃料電池(DMFC)由薄膜、觸媒電極、電極板、集電板等元件所組裝而成,電池堆的設計關鍵在於組裝方式、流道設計以及水熱管理,此三項設計關鍵技術環環相扣,相互影響,各元件之性能可由個別之實驗得出,但電池整體性能之表現及其實用性則必須透過電池堆系統整合測試來作為判斷依據。本文首次搭配3-D繪圖軟體與快速成型技術,循序漸進地開發出適用於微小型呼吸式直接甲醇燃料電池的組裝方式與流道設計,並透過實際電池放電測試來進行各個不同操作條件下對電池性能的影響,並驗證其放電效能。呼吸式直接甲醇燃料電池之性能,在使用50%疏水性碳紙之MEA最大功率密度為2.16 mW/cm2,而在20%疏水性碳紙之MEA最大功率為1.36 mW/cm2。比較不同疏水處理之碳紙,任何操作條件下,疏水性為50%都較優良,這是因為其疏水性比較好,而使水分不容易泛溢,而陽極端二氧化碳也較易排出。串聯成雙電池後最大功率密度變2.8 mW/cm2,只有兩個單電池總合80%左右,整體來看串聯其性能有下降,這是因為串聯會增加電池之內電阻,而使電池效率下降。

      The miniature DMFC and air-breathing DMFC has become recently the major design concepts of DMFC stacks development. The coupled key points of stack design are assembly method, design of cathode structure and heat and water management of stacks. In this thesis, it will integrate flow observation experiment, 3-D computer aided design and rapid prototyping technology to build a database of different stack designs to find the optimal assembly method, cathode structure and power and heat balance. It will help us to develop the optimal miniature air-breathing DMFC stack design finally. Rapid prototyping technology can provide us the rapid-fabricating and accurate test models so that is a mass of data obtained in the shortest time. This research is focused on the single fuel cell, and the cathode is designed into honeycomb type structure. The final stack performance and the optimal operation conditions will be verified by an electric power test, and an omnibus test station will be established also in this studies.
      A DMFC stack is composed of films, catalyst, electrodes and electricity collectors. The performance of individual components can be tested and verified by individual tests, but the overall tests of integrated fuel cell stacks is carried out to verify the components performance and their practicability on stack application.
      The performance of air-breathing DMFC is 2.16 mW/cm2 in peak power density by using 50% of the of hydrophobic carbon paper, and 1.36 mW/cm2 in peak power density with 20% of hydrophobic carbon paper. Comparing three kinds of cathode reactants, the maximum peak power density is 11 mW/cm2 under the pure oxygen supply, then 7 mW/cm2 under forced air supply, and lowest peak power density is only 4 mW/cm2 under air-breathing condition.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 基本原理 5 1.3 文獻回顧 9 1.4 研究動機 13 1.5 研究目的 14 第二章 實驗儀器與設備 15 2.1 快速成型技術簡介 15 2.2 燃料電池測試系統 18 2.2.1燃料供應系統 19 2.2.2 增濕及加熱系統 21 2.2.3資料擷取系統 23 第三章 實驗方法與步驟 26 3.1 極化曲線 26 3.2 電池之活化 27 3.3 呼吸式燃料電池組裝及加工 28 3.4 實驗矩陣 32 第四章 實驗結果與討論 35 4.1 膜電極活化對燃料電池之影響 35 4.2 溫度對燃料電池之影響 38 4.2.1 使用50%疏水性碳紙之溫度影響 38 4.2.2 使用20%疏水性碳紙之溫度影響 39 4.3 甲醇濃度對燃料電池之影響 43 4.3.1 使用50%疏水性碳紙之濃度影響 43 4.3.2 使用20%疏水性碳紙之濃度影響 44 4.4 陰極進料方式對燃料電池之影響 48 4.5 陰極增濕及流量對燃料電池之影響 50 4.5.1 陰極增濕之影響 50 4.5.2 陰極氣體流量之影響 50 4.6 陽極甲醇流量對燃料電池之影響 53 4.7 類雙極板燃料電池之性能 54 第五章 結論 57 第六章 未來工作 59 參考文獻 60 自述 62

    [1] EG&G Services Parsons, Inc. “Fuel Cell Handbook,” November 2002, Sixth edition.
    [2] Rongzhong Jiang, Deryn Chu, “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 93, 2001, pp. 25-31.
    [3] S.J. Lee, Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz, “Design and Fabrication of A Micro Fuel Cell Array with “flip-flop” Interconnection,” Journal of Power Sources, Vol. 112, 2002, pp. 410-418.
    [4] H. Dojle, J. Mergel, D. Stolten, “Heat and Power Management of A Direct-methanol-fuel-cell (DMFC) System,” Journal of Power Sources, Vol. 111, 2002, pp. 268-282.
    [5] C.Y. Chen, P. Yang, “Performance of An Air-breathing Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 123, 2003, pp. 37-42.
    [6] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy, E. Peled, “Water-neutral Micro Direct-methanol Fuel Cell (DMFC) for Portable Applications,” Journal of Power Sources, Vol. 117, 2003, pp. 22-25.
    [7] Jiabin Ge, Hongtan Liu, “Experimental Studies of A Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 142, 2005, pp. 56-69.
    [8] A.S. Arico, P. Cretı, V. Baglio, E. Modica, V. Antonucci, “Influence of Flow Field Design on the Performance of A Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 91, 2000, pp. 202-209.
    [9] John C. Amphlett, Brant A. Peppley, Ela Halliop, Aamir Sadiq, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell,” Journal of Power Sources , Vol. 96, 2001, pp. 204-213.
    [10] Renxuan Liu , Eugene S. Smotkin, “Array Membrane Electrode Assemblies for High Throughput Screening of Direct Methanol Fuel Cell Anode Catalysts,” Journal of Electroanalytical Chemistry Vol. 535,2002, pp. 49-55.
    [11] X. Ren, M. Wilson and S. Gottesfeld, “High Performance Direct Methanol Polymer Electrolyte Fuel Cell,” J. Electrochem. Soc. 143, 1996.
    [12] J. Cruickshamk, and K. Scott, J. Power Source, 70, 40, 1998.
    [13] Zhigang Qi, Arthur Kaufman, “Open Circuit Voltage and Methanol Crossover in DMFCs,” Journal of Power Sources, Vol. 110, 2002, pp. 177-185.
    [14] 黃鎮江, “燃料電池,” 全華科技圖書股份有限公司,2003。
    [15] http://www.iaa.ncku.edu.tw/%7Erpl/
    [16] 陳慕辰, “直接甲醇燃料電池陰陽阻抗之分析,” 國立成功大學化工系碩士論文,2004。

    下載圖示 校內:2008-08-22公開
    校外:2008-08-22公開
    QR CODE