| 研究生: |
周明昌 Chou, Ming-Chang |
|---|---|
| 論文名稱: |
呼吸式直接甲醇燃料電池設計之研究 Studies on the Air-Breathing Direct Methanol Fuel Cell Design |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 呼吸式 、直接甲醇燃料電池 、微小型 、快速成型技術 |
| 外文關鍵詞: | miniature, direct methanol fuel cell, rapid prototyping technology, air-breathing |
| 相關次數: | 點閱:128 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池朝向微小型與呼吸式兩種型態設計,近幾年已成為國際各大型研發機構研究電池堆的主要方向。直接甲醇燃料電池(DMFC)由薄膜、觸媒電極、電極板、集電板等元件所組裝而成,電池堆的設計關鍵在於組裝方式、流道設計以及水熱管理,此三項設計關鍵技術環環相扣,相互影響,各元件之性能可由個別之實驗得出,但電池整體性能之表現及其實用性則必須透過電池堆系統整合測試來作為判斷依據。本文首次搭配3-D繪圖軟體與快速成型技術,循序漸進地開發出適用於微小型呼吸式直接甲醇燃料電池的組裝方式與流道設計,並透過實際電池放電測試來進行各個不同操作條件下對電池性能的影響,並驗證其放電效能。呼吸式直接甲醇燃料電池之性能,在使用50%疏水性碳紙之MEA最大功率密度為2.16 mW/cm2,而在20%疏水性碳紙之MEA最大功率為1.36 mW/cm2。比較不同疏水處理之碳紙,任何操作條件下,疏水性為50%都較優良,這是因為其疏水性比較好,而使水分不容易泛溢,而陽極端二氧化碳也較易排出。串聯成雙電池後最大功率密度變2.8 mW/cm2,只有兩個單電池總合80%左右,整體來看串聯其性能有下降,這是因為串聯會增加電池之內電阻,而使電池效率下降。
The miniature DMFC and air-breathing DMFC has become recently the major design concepts of DMFC stacks development. The coupled key points of stack design are assembly method, design of cathode structure and heat and water management of stacks. In this thesis, it will integrate flow observation experiment, 3-D computer aided design and rapid prototyping technology to build a database of different stack designs to find the optimal assembly method, cathode structure and power and heat balance. It will help us to develop the optimal miniature air-breathing DMFC stack design finally. Rapid prototyping technology can provide us the rapid-fabricating and accurate test models so that is a mass of data obtained in the shortest time. This research is focused on the single fuel cell, and the cathode is designed into honeycomb type structure. The final stack performance and the optimal operation conditions will be verified by an electric power test, and an omnibus test station will be established also in this studies.
A DMFC stack is composed of films, catalyst, electrodes and electricity collectors. The performance of individual components can be tested and verified by individual tests, but the overall tests of integrated fuel cell stacks is carried out to verify the components performance and their practicability on stack application.
The performance of air-breathing DMFC is 2.16 mW/cm2 in peak power density by using 50% of the of hydrophobic carbon paper, and 1.36 mW/cm2 in peak power density with 20% of hydrophobic carbon paper. Comparing three kinds of cathode reactants, the maximum peak power density is 11 mW/cm2 under the pure oxygen supply, then 7 mW/cm2 under forced air supply, and lowest peak power density is only 4 mW/cm2 under air-breathing condition.
[1] EG&G Services Parsons, Inc. “Fuel Cell Handbook,” November 2002, Sixth edition.
[2] Rongzhong Jiang, Deryn Chu, “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 93, 2001, pp. 25-31.
[3] S.J. Lee, Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz, “Design and Fabrication of A Micro Fuel Cell Array with “flip-flop” Interconnection,” Journal of Power Sources, Vol. 112, 2002, pp. 410-418.
[4] H. Dojle, J. Mergel, D. Stolten, “Heat and Power Management of A Direct-methanol-fuel-cell (DMFC) System,” Journal of Power Sources, Vol. 111, 2002, pp. 268-282.
[5] C.Y. Chen, P. Yang, “Performance of An Air-breathing Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 123, 2003, pp. 37-42.
[6] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy, E. Peled, “Water-neutral Micro Direct-methanol Fuel Cell (DMFC) for Portable Applications,” Journal of Power Sources, Vol. 117, 2003, pp. 22-25.
[7] Jiabin Ge, Hongtan Liu, “Experimental Studies of A Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 142, 2005, pp. 56-69.
[8] A.S. Arico, P. Cretı, V. Baglio, E. Modica, V. Antonucci, “Influence of Flow Field Design on the Performance of A Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 91, 2000, pp. 202-209.
[9] John C. Amphlett, Brant A. Peppley, Ela Halliop, Aamir Sadiq, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell,” Journal of Power Sources , Vol. 96, 2001, pp. 204-213.
[10] Renxuan Liu , Eugene S. Smotkin, “Array Membrane Electrode Assemblies for High Throughput Screening of Direct Methanol Fuel Cell Anode Catalysts,” Journal of Electroanalytical Chemistry Vol. 535,2002, pp. 49-55.
[11] X. Ren, M. Wilson and S. Gottesfeld, “High Performance Direct Methanol Polymer Electrolyte Fuel Cell,” J. Electrochem. Soc. 143, 1996.
[12] J. Cruickshamk, and K. Scott, J. Power Source, 70, 40, 1998.
[13] Zhigang Qi, Arthur Kaufman, “Open Circuit Voltage and Methanol Crossover in DMFCs,” Journal of Power Sources, Vol. 110, 2002, pp. 177-185.
[14] 黃鎮江, “燃料電池,” 全華科技圖書股份有限公司,2003。
[15] http://www.iaa.ncku.edu.tw/%7Erpl/
[16] 陳慕辰, “直接甲醇燃料電池陰陽阻抗之分析,” 國立成功大學化工系碩士論文,2004。