簡易檢索 / 詳目顯示

研究生: 歐倢伶
Ou, Jie-Ling
論文名稱: 利用氧化鎂改質結合溼式磁選技術進行轉爐石中鐵磷資源化研究
The research on Iron and Phosphorus Resource Utilization in BOF Slag through Magnesium Oxide Modification Combined with Wet Magnetic Separation Technology
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 195
中文關鍵詞: 轉爐石煉鋼爐渣渣鐵分離溼式磁選循環利用MgO
外文關鍵詞: steelmaking slag, phosphorus fixation, Iron oxidation, MgO, phosphorus migration, magnetic separation, wet magnetic separation, recycling
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在煉鋼過程中,每噸鋼可產生100-150公斤的鹼性氧氣轉爐石副產物,造成了嚴重的環境污染和資源浪費。轉爐石含有大部分有價值之元素,其中含40–60 wt% CaO、10–20 wt% SiO2、10–30 wt% Fe、5–15 wt% MgO, 0–5 wt% P2O5以及其他微量成分。不幸的是,其內部游離石灰的比例甚高,亦隨老化而水化,導致膨脹等問題,不允許在道路建設或土木工程中使用,限制了其適用性。此外,轉爐石含有大量濃度的磷,對於回爐煉鋼的再利用帶來負面影響,磷會被還原並溶解在鐵水中。隨著程序反覆進行,磷會在鐵水中積累,最後造成鐵的延展性與抗腐蝕性降低,使得鐵回收成為現在的阻礙。因此,針對膨脹問題以及對含磷在內的有價元素進行回收,以實現有助於爐石中鐵或石灰部分的再利用和回收途徑。本研究提出實現轉爐石的「零廢棄」處理和增值之可能解決方案,針對轉爐石以固相轉移方式,實現鐵和磷的分別富集來進行回收,通過調整鹼度、添加劑、溫度、流量以及冷卻方式來進行優化,並經過溼式磁選,調整磁力大小、時間與次數達到最佳鐵磷回收率。研究使用XRF測定磁性渣與非磁性渣的成分組成,以及使用SQUID測定樣品磁力,並以XRD了解晶相分布與生成狀況。根據研究結果,最佳條件為9 wt% SiO2和5 wt% MgO,在1350 °C下,空氣流量1 L/min,緩慢冷卻,磁力85 mT,時間3分鐘,次數1次,即可達到鐵回收率62%,磷回收率85%,磁性渣中鐵含量為64%,足以回廠煉鋼。添加SiO2調整鹼度,可抑制鐵珠生成,控制鐵與磷的富集。另外,使用空氣及MgO可以避免鐵大量還原,促鐵型態產生轉變,生成新晶相Fe3O4及(Mg, Fe)2SiO4和(Fe, Mg)SiO3等物質,並再透過時間和多階段的磁選控制優化爐渣磁選程序,結果顯示,磁選3次並持續3分鐘更有利於鐵與磷的濃縮,其中磁性渣最高鐵含量接近70%,非磁性渣中磷提高為2.7%。研究結果為提高轉爐石的回收利用提供了實際可行的方法,透過適當的操作與添加劑的應用,不僅能減少磁性渣中的磷含量,同時也增加非磁性渣作為肥料的回收可能性,進一步實現更為環保和可持續的煉鋼生產。

    In steelmaking, basic oxygen furnace slag (BOF slag) is one of inevitable by-products, typically ranging from 40–60 wt% of CaO, 10–20 wt% of SiO2, 10–30 wt% of Fe, 5–15 wt% of MgO, and 0–5 wt% of P2O5, along with trace components. However, its high free lime content, coupled with aging-induced expansion, makes it unsuitable for various applications, including road construction, and its high phosphorus concentration poses challenges for steel recycling. This study proposes a zero-waste treatment approach for recovery of BOF slags and maximize resource utilization. We focus on solid-phase transformation to enrich iron and phosphorus for separate recovery. Optimization process involves adjusting basicity, adding SiO2 and MgO, controlling temperature, and gas flow, and employing wet magnetic separation. XRF, SQUID and XRD are used to determine the elemental composition, magnetic strength, and crystal phases, respectively. Optimal conditions include the addition of 9 wt% of SiO2 and 5 wt% of MgO, maintaining 1350 °C with 1 L/min of airflow and cooling for 600 minutes, using an 85 mT of magnetic field, and repeating magnetic separation for 3 minutes. This outcome can achieve iron and phosphorus recovery rates of 62.2 and 85.3%, respectively. Adjusting basicity with SiO2 suppresses excessive iron bead formation. At the same time, air and MgO prevent excessive iron reduction, promoting the formation of new substances like Fe3O4 and (Mg, Fe)2SiO4 and (Fe, Mg)SiO3, enhancing iron recovery. The optimized process for slag magnetic separation includes three steps of magnetic separation. This method maximizes the concentration of Fe in the magnetic substances (reaching nearly 70% of TFe content) and the concentration of P2O5 in the non-magnetic substances (ca. 2.7%.) The study provides a practical route to increase the BOF slag recycling and reuse amounts, contributing to environmentally friendly and sustainable steelmaking production.

    摘要 I ABSTRACT II CONTENT IV LIST OF TABLES VII LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2 Objective 2 CHAPTER 2 LITERATURE 3 2.1. Basic Oxygen Furnace (BOF) Slag 3 2.2. BOF Slag Phosphorus Removal Technology 8 2.2.1 Carbon Thermal Reduction Technology 8 2.2.2 Solid Phase Modification Process 10 2.3. Phosphorus Migration Behavior 14 2.4. Temperature 17 2.5. Basicity 19 2.6. Iron Recycling Modification Technology 24 2.6.1 Effect of Additives 25 2.6.1.1. MgO additive 25 2.6.1.2. MnO additive 29 2.7. Atmosphere 30 2.7.1 Flaw rate 31 2.7.2 Oxidation Temperature 32 2.8. Magnetic Separation 34 2.8.1 Magnetic Field Strength 37 2.8.2 Magnetic Times 39 2.8.3 Magnetic Steps 41 2.9. Cooling Rate 42 CHAPTER 3 EXPERIMENT METHODS 45 3.1. Experimental flowchart and design 45 3.2. Experimental Equipment 47 3.3. Material 49 3.3.1 Chemical 49 3.3.2 Magnet 49 3.3.3 Industrial BOF slag Pretreatment 49 3.3.4 Preparation of solid-phase modification experiment agent and dosage design 50 3.3.5 Wet Magnetic Separation Experiment Design and Parameter Settings 51 3.4. Characterization and Analysis 54 3.4.1 Sample Treatments 54 3.4.2 X-ray fluorescence (XRF) 55 3.4.3 X-ray diffractometer (XRD) 56 3.4.4 Superconducting Quantum Interference Device (SQUID) 56 3.4.5 Electron Probe Microanalysis (EPMA) 57 CHAPTER 4 RESULTS AND DISCUSSION 58 4.1. Effect of magnetic field 58 4.2 Effect of temperature 67 4.3 Effect of Basicity 81 4.4 Effect of atmosphere and flow rate 99 4.5 Effect of MgO 115 4.6 Effect of cooling method 133 4.7 Effect of magnetic separation 151 4.7.1 Effect of time 151 4.7.2 Effect of Multi-step 157 4.8 Mass balance in the separation process of modified fixed phosphorus and iron and wet magnetic separation slag iron. 162 CHAPTER 5 CONCLUSIONS 165 CHAPTER 6 REFERENCE 168

    Britt, T. and P. C. Pistorius (2021). "Catalytic graphitization of Glassy Carbon by Molten Fe-Csat." Metallurgical and Materials Transactions B 52(1): 1-5.
    Chen, Z., R. Li, X. Zheng and J. Liu (2021). "Carbon sequestration of steel slag and carbonation for activating RO phase." Cement and Concrete Research 139: 106271.
    Decterov, S. A., I.-H. Jung and A. D. Pelton (2002). "Thermodynamic Modeling of the FeO–Fe2O3–MgO–SiO2 System." Journal of the American Ceramic Society 85(12): 2903-2910.
    Dwari, R. K., D. S. Rao and P. S. R. Reddy (2013). "Magnetic separation studies for a low grade siliceous iron ore sample." International Journal of Mining Science and Technology 23(1): 1-5.
    Gautier, M., J. Poirier, F. Bodénan, G. Franceschini and E. Véron (2013). "Basic oxygen furnace (BOF) slag cooling: Laboratory characteristics and prediction calculations." International Journal of Mineral Processing 123: 94-101.
    Ghorab, H. Y., M. Rizk, B. Ibrahim and M. M. Allam (2014). "High belite cement from alternative raw materials." Materiales de Construcción 64(314): e012.
    He, Z., X. Hu and K.-C. Chou (2022). "Synergetic modification of industrial basic oxygen furnace slag and copper slag for efficient iron recovery." Process Safety and Environmental Protection 165: 487-495.
    He, Z., X. Hu and K.-C. Chou (2023). "Oxidative modification of industrial basic oxygen furnace slag for recover iron-containing phase: Study on phase transformation and mineral structure evolution." Process Safety and Environmental Protection 171: 167-175.
    He, Z., M. Lan, X. Hu, X. Xue and K.-C. Chou (2022). "Study on Oxidation Behavior of Industrial Basic Oxygen Furnace Slag and Recovery of Magnetic Iron-Containing Phase." steel research international 93(5): 2100558.
    Iwasaki, I., E. Fregeau-Wu, T. J. M. P. Fujita and E. M. Review (1993). "Removal of phosphorus from steelmaking slags: a literature survey." 12(1): 19-36.
    Jeong, Y.-S., K. Matsubae-Yokoyama and T. J. G. S. o. E. S. Nagasaka, Tohoku University, Sendai (2009). "Recovery of manganese and phosphorus from Dephosphorization slag with wet magnetic separation." 980-8579.
    Jiang, L., Y. W. Bao, X. Hu, Y. Chen, G. Liu, F. L. Han, Q. Yang, J. J. I. Wu and Steelmaking (2019). "Experimental investigation on BOF slag oxidation in air." 46: 747 - 754.
    Jung, S.-M., Y.-J. Do and J.-H. Choi (2006). "Reduction Behaviour of BOF type Slags by Solid Carbon." steel research international 77(5): 305-311.
    Jung, S. M., Y. J. Do and J. H. J. S. r. i. Choi (2006). "Reduction behaviour of BOF type slags by solid carbon." 77(5): 305-311.
    Katsura, K., K. Isobe and T. Itaoka (1964). "Computer control of the basic oxygen process." JOM 16(4): 340-345.
    Kattel, S., B. Yan, Y. Yang, J. G. Chen and P. Liu (2016). "Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper." J. Am. Chem. Soc. 138(38): 12440.
    Kitayama, K. and T. Katsura (2006). "Activity Measurements in Orthosilicate and Metasilicate Solid Solutions. I. Mg2SiO4-Fe2SiO4 and MgSiO3-FeSiO3 at 1204°C." Bulletin of the Chemical Society of Japan 41(5): 1146-1151.
    Klug, J. L., S. L. Medeiros, H. Caldas, M. Bentes and H. J. M. R. Becker (2022). "Separation of iron and calcium from a BSSF steelmaking slag through acid leaching." 25: e20210571.
    Kovtun, O., I. Korobeinikov, S. C, A. K. Shukla and O. Volkova (2020) "Viscosity of BOF Slag." Metals 10 DOI: 10.3390/met10070982.
    Ku-Ling Chang, C.-T. H., WIN- JAY HUANG, YUANG-CHANG LIU (2008). "Investigations of Microstructure and Phosphorus Distribution in BOF Slag." Steel and Aluminum Research and Development Department China Steel Corporation: 1-6.
    Kubo, H., K. Matsubae-Yokoyama and T. Nagasaka (2009). "Magnetic separation of phosphorus enriched phase from multiphase dephosphorization slag." Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 95(3): 300-305.
    Lan, M., Z. He and X. Hu (2022) "Optimization of Iron Recovery from BOF Slag by Oxidation and Magnetic Separation." Metals 12 DOI: 10.3390/met12050742.
    Lee, Y., J. Kim, S. Yi and D. Min (2004). Viscous behaviour of CaO-SiO2-Al2O3-MgO-FeO slag. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy.
    Li, C., J. Gao and Z. J. I. I. Guo (2016). "Isothermal enrichment of P-concentrating phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity." 56(5): 759-764.
    Li, C., H. Sun, J. Bai and L. Li (2010). "Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting." Journal of Hazardous Materials 174(1): 71-77.
    Li, C., Y. Xue, S. Tong and K. Zhang (2022). Phosphorus Migration Behavior in the Process of Converter Slag Gasification Dephosphorization. 12th International Symposium on High-Temperature Metallurgical Processing, Cham, Springer International Publishing.
    Lin, L., Y.-p. Bao, M. Wang, W. Jiang and H.-m. Zhou (2014). "Separation and Recovery of Phosphorus from P-bearing Steelmaking Slag." Journal of Iron and Steel Research International 21(5): 496-502.
    Lin, L., Y.-P. Bao, M. Wang and X. Li (2016). "Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag." 35(4): 425-432.
    Lin, L., Y. P. Bao, M. Wang, H. M. Zhou and L. Q. Zhang (2013). "Influence of SiO2 modification on phosphorus enrichment in P bearing steelmaking slag." Ironmaking & Steelmaking 40(7): 521-527.
    Lin, L., Y.-Q. Liu, J.-G. Zhi, S. He, X. Li, Z.-X. Hou and L.-Q. Zhang (2021). "Influence of slag temperature on phosphorus enrichment in P-bearing steelmaking slag." Ironmaking & Steelmaking 48(3): 334-342.
    Liu, C., S. Huang, P. Wollants, B. Blanpain and M. Guo (2017). "Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization." Metallurgical and Materials Transactions B 48(3): 1602-1612.
    Liu, L.-G. (1976). "The high-pressure phases of FeSiO3 with implications for Fe2SiO4 and FeO." Earth and Planetary Science Letters 33(1): 101-106.
    Liu, X., D.-z. Wang, Z.-w. Li, W. Ouyang, Y.-p. Bao and C. Gu (2023). "Efficient separation of iron elements from steel slag based on magnetic separation process." Journal of Materials Research and Technology 23: 2362-2370.
    Mochizuki, Y., N. Tsubouchi and K. Sugawara (2020). "Separation of valuable elements from steel making slag by chlorination." Resources, Conservation and Recycling 158: 104815.
    Mordor (2023). "Soil Conditioners Market - Growth, Trends, and Forecasts (2023 - 2028)." Mordor Intelligence 90.
    Morita, K., M. Guo, N. Oka and N. Sano (2002). "Resurrection of the iron and phosphorus resource in steel-making slag." Journal of Material Cycles and Waste Management 4(2): 93-101.
    Naidu, T. S., C. M. Sheridan and L. D. van Dyk (2020). "Basic oxygen furnace slag: Review of current and potential uses." Minerals Engineering 149: 106234.
    Nakase, K., A. Matsui, N. Kikuchi and Y. Miki (2017). "Effect of Slag Composition on Phosphorus Separation from Steelmaking Slag by Reduction." ISIJ International 57(7): 1197-1204.
    Nan, W., Z.-g. Liang, C. Min, Z.-s. J. J. o. I. Zou and I. Steel Research (2011). "Phosphorous enrichment in molten adjusted converter slag: part II enrichment behavior of phosphorus in CaO-SiO2-FeOx-P2O5 molten slag." 18(12): 22-26.
    Pan, J. R., Huang, C., Kuo, J., & Lin, S. (2008). "Recycling MSWI bottom and fly ash as raw materials for Portland cement." Institute of Environmental Engineering: 1113-1118.
    Park, I., Y. Kanazawa, N. Sato, G. Purevdelger, M. Jha, C. Tabelin, S. Jeon, M. Ito and N. Hiroyoshi (2021). "Beneficiation of Low-Grade Rare Earth Ore from Khalzan Buregtei Deposit (Mongolia) by Magnetic Separation." Minerals 11: 1432.
    Peray, K. E. (2023). "Quality & Composition of cement clinker." Cement technology.
    Rao, L., Y. Dong, M. Gui, Y. Zhang, X. Shen, X. Wu and F. Cao (2020). "Growth, Stratification, and Liberation of Phosphorus-Rich C2S in Modified BOF Steel Slag." 13(1): 203.
    Ren, Z. and D. Li (2023) "Application of Steel Slag as an Aggregate in Concrete Production: A Review." Materials 16 DOI: 10.3390/ma16175841.
    Ronchi, C. and M. Sheindlin (2001). "Melting point of MgO." Journal of Applied Physics 90(7): 3325-3331.
    Saito, K., Y. Kashiwaya and M. Hasegawa (2023). "Solubility and Activity of Iron Oxide in Solid Solutions between Ca<sub>2</sub>SiO<sub>4</sub> and Ca<sub>3</sub>P<sub>2</sub>O<sub>8</sub> at 1573 K." ISIJ International 63(4): 631-638.
    Semykina, A., V. Shatokha, S. J. I. Seetharaman and steelmaking (2010). "Innovative approach to recovery of iron from steelmaking slags." 37(7): 536.
    Sharma, N., V. N. Nurni, V. Tathavadkar and S. Basu (2017). "A review on the generation of solid wastes and their utilization in Indian steel industries." Mineral Processing and Extractive Metallurgy 126(1-2): 54-61.
    Shi, C. (2004). "Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties." Journal of Materials in Civil Engineering 16(3): 230-236.
    Shu, Q. (2009). "A Viscosity Estimation Model for Molten Slags in Al2O3-CaO-MgO-SiO2 System." steel research international 80(2): 107-113.
    Shu, Q. F. and Y. Liu (2018). "Effects of basicity, MgO and MnO on mineralogical phases of CaO–FeOx–SiO2–P2O5 slag." Ironmaking & Steelmaking 45(4): 363-370.
    Su, T.-H., H.-J. Yang, Y.-C. Lee, Y.-H. Shau, E. Takazawa, M.-F. Lin, J.-L. Mou and W.-T. Jiang (2016). "Reductive Heating Experiments on BOF-Slag: Simultaneous Phosphorus Re-Distribution and Volume Stabilization for Recycling." steel research international 87(11): 1511-1526.
    Sun, J., C. Liu and M. Jiang (2022). "Influence Mechanism of Ce<sub>2</sub>O<sub>3</sub> on Dephosphorization Process using CaO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–MnO Based Slag." ISIJ International 62(3): 515-523.
    T.W.Cheng, W. H. L., T.K.Hu, K.Y.Lin, C.T. Tsai, C.C.Wu (2018). "New Technique for Stabilization/Reutilization of BOF Slags – Geopolymer Technology." 12.
    Tripathy, S. K., P. K. Banerjee, N. Suresh, Y. R. Murthy and V. Singh (2017). "Dry High-Intensity Magnetic Separation In Mineral Industry—A Review Of Present Status And Future Prospects." Mineral Processing and Extractive Metallurgy Review 38(6): 339-365.
    Tsai, T. T. and C. M. Kao (2009). "Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag." Journal of Hazardous Materials 170(1): 466-472.
    Wang, D., M. Jiang, C. Liu, Y. Min, Y. Cui, J. Liu and Y. Zhang (2012). "Enrichment of Fe-Containing Phases and Recovery of Iron and Its Oxides by Magnetic Separation from BOF Slags." steel research international 83(2): 189-196.
    Wang, Z., Y. Bao, D. Wang, C. Gu and M. Wang (2022) "Study on the Effect of Different Factors on the Change of the Phosphorus-Rich Phase in High Phosphorus Steel Slag." Crystals 12 DOI: 10.3390/cryst12081030.
    Wu, X., P. Wang, L. Li, Z. Wu, R. J. I. Chen and Steelmaking (2011). "Distribution and enrichment of phosphorus in solidified BOF steelmaking slag." 38(3): 185-188.
    Wu, X. R., G. M. Yang, L. S. Li, H. H. Lü, Z. J. Wu and X. M. Shen (2014). "Wet magnetic separation of phosphorus containing phase from modified BOF slag." Ironmaking & Steelmaking 41(5): 335-341.
    Xue, P., D. He, A. Xu, Z. Gu, Q. Yang, F. Engström and B. Björkman (2017). "Modification of industrial BOF slag: Formation of MgFe2O4 and recycling of iron." Journal of Alloys and Compounds 712: 640-648.
    Xue, Y., C. Li, C. Zhou, D. Zhao and S. Wang (2019). "Removal mechanism of phosphorus by carbothermic reduction of steel slag." High Temperature Materials and Processes 38: 905-915.
    Xue, Y., P. Tian, C. Li, D. Zhao and S. Wang (2019). "Reduction Mechanism of P2O5 in Steel Slag." Transactions of the Indian Institute of Metals 73.
    Xuequan, W., Z. Hong, H. Xinkai and L. Husen (1999). "Study on steel slag and fly ash composite Portland cement." Cement and Concrete Research 29(7): 1103-1106.
    Yu-Ning Kuo, M.-H. C., Shu-Huai Chang, Heng-Wen Hsu (2019). "Implementation of BOF Slag Indirect Carbonation Process for Carbon Dioxide Utilization." Combustion Quarterly(107): 27-36.
    Yu, H., X. Lu, T. Miki, K. Matsubae, Y. Sasaki and T. Nagasaka (2022). "Sustainable phosphorus supply by phosphorus recovery from steelmaking slag: a critical review." Resources, Conservation and Recycling 180: 106203.
    Yu, H., T. Miki, Y. Sasaki and T. Nagasaka (2022). "Simultaneous Reduction of P2O5 and FeO from CaO–SiO2–FeO–P2O5 Synthesized Slag by Carbothermic Reduction." Metallurgical and Materials Transactions B 53(3): 1806-1815.
    Yu, K., Y.-l. Zhang, F.-s. Li and M. Gao (2019). "Effect of Al2O3/TiO2/Na2O on enrichment of phosphorus in P-bearing steelmaking slag." Journal of Iron and Steel Research International 26(8): 796-805.
    Zhang, H., B. Li, Y. Wei, H. Wang and Y. Yang (2022). "Effect of MgO on physicochemical property and phase transformation in copper slag." Journal of Materials Research and Technology 18: 4604-4616.
    Zhang, J., G. Luo, W. Zhao, W. Xin and B. Cao (2019). "Phosphorus Gasification during the Carbothermic Reduction of Medium Phosphorus Magnetite Ore by Adding Na<sub>2</sub>CO<sub>3</sub>." ISIJ International 59(2): 235-244.
    Zhong, M., H. Matsuura and F. Tsukihashi (2015). "Activity of P<sub>2</sub>O<sub>5</sub> in Solid Solution between Di-calcium Silicate and Tri-calcium Phosphate at 1823 and 1873 K." ISIJ International 55(11): 2283-2288.
    Zhu, D., Z. Guo, J. Pan and F. Zhang (2016) "Synchronous Upgrading Iron and Phosphorus Removal from High Phosphorus Oolitic Hematite Ore by High Temperature Flash Reduction." Metals 6 DOI: 10.3390/met6060123.

    無法下載圖示 校內:2029-08-15公開
    校外:2029-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE