簡易檢索 / 詳目顯示

研究生: 張哲維
Chang, Che-Wei
論文名稱: 數位式硬體迴路模擬於BATS性能測試與即時複合實驗評估
Performance Test of Bi-Axial Testing System and Evaluation of a Real-Time Hybrid Testing by Digital Hardware-in-the-Loop Simulation
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 293
中文關鍵詞: 振動台實驗即時複合實驗振動台性能測試記憶體共享光纖網路硬體迴路模擬變曲率滑動支承
外文關鍵詞: shaking table test, real-time hybrid testing, performance test of shaking table, share common memory (SCRAMNet), hardware-in-the-loop simulation, sliding isolator with variable curvature
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決大型結構實尺寸振動台實驗之經濟性問題,因而衍生了結合振動台之即時複合實驗技術,此實驗技術之優點為可將實體結構之大部分以數值模型代替,只留下不易模擬之部分構件讓其呈現真實實尺寸之行為,惟其實驗之技術性、複雜度皆高於振動台實驗。
    於即時複合實驗技術之開發過程中,較直觀的比較基準即為實體機構之振動台實驗數據,本文之研究重點為剖析變曲率隔震樓板系統(PSIVC-FIS)振動台實驗相關之即時複合實驗研究成果,透過不同振動台進行PSIVC-FIS即時複合實驗,整理影響即時複合實驗結果之因素,如振動台轉換函數、訊號傳輸方式、濾波器影響、隔震元件摩擦材之差異與初始偏移量等,並於國家地震工程研究中心台南實驗室之BATS振動台,再次進行即時複合實驗評估。
    本文透過與數值模擬比較,探討類比式硬體迴路模擬(Analog Hardware-in-the-Loop-Simulation,A-HILS)與數位式硬體迴路模擬(Digital Hardware-in-the-Loop-Simulation,D-HILS)誤差來源,並將振動台轉換函數加入D-HILS,使模擬結果更具可靠性,除了驗證D-HILS應用於即時複合實驗預估外,還將其用以評估前人實驗數據中不確定因素。

    To solve the obstacles of the shaking table test(STT) in scaling effect. Therefore, the development of real-time hybrid testing(RTHT) technology combined with a shaking table is derived. The more intuitive comparison benchmark in the development process is the experimental data of the entity mechanism STT. This study analyzes the RTHT results related to the PSIVC-FIS STT. Propose the factors influencing the results of RTHT, such as the transfer function of the shaking table, the signal transmission type, the filter influence, the friction material, the initial offset of the isolator, etc. Therefore, this paper is again evaluated for RTHT at the shaking table(BATS) of the National Center for Research on Earthquake Engineering Tainan Laboratory. To make the experimental simulation estimate more reliable, the transfer function of the shaking table is added to the digital hardware-in-the-Loop simulation(D-HILS). In addition to validating the evaluation of RTHT by D-HILS, it is also used to assess uncertainties in the RTHT experimental data of predecessors.

    摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XVII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 多項式變曲率滑動支承相關文獻 2 1.2.2 即時複合實驗相關文獻 3 1.2.3 硬體迴路模擬相關文獻 5 1.3 本文內容 6 第2章 配置多項式變曲率滑動支承(PSIVC)隔震樓板理論介紹 8 2.1 前言 8 2.2 PSIVC元件介紹 8 2.2.1 PSIVC元件構造 8 2.2.2 PSIVC力學分析 9 2.2.3 PSIVC設計參數 11 2.3 PSIVC隔震樓板系統受地震之運動方程式推導 12 2.3.1 振動台實驗運動方程式推導 12 2.3.2 複合實驗運動方程式推導 15 2.3.3 Simulink數學模型驗證 19 2.4 小結 21 第3章 PSIVC隔震樓板(PSIVC-FIS)之類比式與數位式硬體迴路模擬 34 3.1 前言 34 3.2 硬體迴路模擬介紹 34 3.2.1 類比式硬體迴路模擬 34 3.2.2 數位式硬體迴路模擬 35 3.2.3 類比式與數位式硬體迴路模擬比較 36 3.3 類比式硬體迴路模擬應用 39 3.3.1 前人即時複合實驗結果探討 39 3.4 數位式硬體迴路模擬應用 42 3.4.1 振動台試驗PSIVC-FIS初始位移驗證 42 3.5 小結 48 第4章 BATS與MAST振動台之性能測試 89 4.1 前言 89 4.2 識別方法介紹 89 4.2.1 頻率響應函數(FRF) 89 4.2.2 觀測器/卡曼濾波器識別方法(OKID) 91 4.2.3 特徵系統實現理論(ERA) 99 4.2.4 正弦波掃頻 103 4.3 記憶體共享即時控制器(PRTTM) 104 4.4 多軸向振動台(MAST)之加速度控制特性 104 4.4.1 MAST介紹 104 4.4.2 實驗目的 105 4.4.3 實驗架構 105 4.4.4 感測器配置 106 4.4.5 實驗結果 106 4.5 雙軸向動態測試系統(BATS)之位移控制特性 107 4.5.1 BATS介紹 107 4.5.2 實驗目的 108 4.5.3 實驗架構 109 4.5.4 感測器配置 109 4.5.5 實驗結果 110 4.5.6 BATS之穩定性 112 4.6 小結 113 第5章 PSIVC隔震樓板於BATS位移控制之數位式即時複合實驗 155 5.1 前言 155 5.2 即時複合實驗架構與參數 155 5.2.1 PSIVC-FIS即時複合實驗架構與參數 155 5.2.2 MAST控制特性之PSIVC-FIS即時複合實驗架構與參數 156 5.3 實驗試體 157 5.4 實驗設備 157 5.4.1 雙軸向動態測試系統(BATS) 157 5.4.2 記憶體共享即時控制器(PRTTM) 157 5.4.3 感測器配置 158 5.4.4 量測系統 158 5.5 摩擦係數識別 159 5.6 數位式硬體迴路模擬應用於即時複合實驗預估 164 5.7 即時複合實驗結果 168 5.7.1 複合實驗與振動台實驗結果比較 168 5.7.2 複合實驗與前人複合實驗結果比較 172 5.7.3 小結 175 第6章 結論與未來研究建議 282 6.1 結論 282 6.2 未來研究建議 284 參考文獻 286 口試委員審查意見 291

    [1]Hakuno, M., Shidawara, M., and Hara, T.,“Dynamic destructive test of a cantilever BEAM, CONTROLLED BY AN ANALOG-COMPUTER”, Japan Society of Civil Engineers, 1969.
    [2]Takanashi K., Udagawa K., Seki M., Okada T., and Tanaka H.,“Non-linear earthquake response analysis of structures by a computer-actuator on-line system : Part 1 Detail of the System”, Transactions of the Architectural Institute of Japan, 1975.
    [3]Udagawa, K., Takanashi, K.,and Tanaka, H.,“Non-linear earthquake response analysis of structures by a computer-actuator on-line system : Part II : Response Analyses of One Bay-One Story Steel Frames with Inelastic Beams”, Transactions of the Architectural Institute of Japan, 1978.
    [4]Takanashi, K., Udagawa, K., and Tanaka, H.,“Non-linear earthquake response analysis of structures by a computer-actuator on-line system Part III : Response Analyses of 1-Bay 2-Story Steel Frames”, Transactions of the Architectural Institute of Japan, 1980.
    [5]Dermitzakis, S.N. and Mahin, S.A.,“Development of substructuring techniques for on-line computer controlled seismic performance testing”, University of California Berkeley, 1985.
    [6]Nakashima, M., Kato, H., and Takaoka, E,“Development of real-time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics”, 1992.
    [7]Chung, W.J., Yun, C.B., Kim, N.S., and Seo, J.W.,“Shaking table and pseudo dynamic tests for the evaluation of the seismic performance of base-isolated structures”, Engineering Structures, 1999.
    [8]Horiuchi, T., Inoue, M., Konno, T., and Yamagishi, W.,“ Development of a Real-Time Hybrid Experimental System Using a Shaking Table : (Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System)”, JSME International Journal Series C, 1999
    [9]Ledin, J.A.,“Hardware-in-the-loop simulation”, Embedded Systems Programming, 1999.
    [10]Chu, S.Y., Soong, T.T., Reinhorn, A.M., Helgeson, R.J., and Riley, M.A.,“Integration issues in implementation of structural control systems”, Journal of Structural Control, 2002.
    [11]Reinhorn, A., Sivaselvan, M., Weinreber, S., and Shao, X.,“Real-time dynamic hybrid testing of structural systems”, World Conference on Earthquake Engineering, 2004.
    [12]Chu, S., Lo, S., and Li, M.,“Application of sacrament in real-time pseudo dynamic test and simulation”, International Conference on Earthquake Engineering, 2006.
    [13]Carrion, J.E., and Spencer Jr, B.F.,“Model-based strategies for real-time hybrid testing”, 2007.
    [14]Yang, T., Mosqueda, G., and Stojadinovj, B.“Evaluating the quality of hybrid simulation test using an energy-based approach”, World Conference on Earthquake Engineering, 2008.
    [15]Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., and Lu, K.H.,“Optimal performance of discrete‐time direct output‐feedback structural control with delayed control forces”, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, vol. 15, no. 1, pp. 20-42, 2008.
    [16]WANG, T. and CHENG, C.,“A model-based predictor-corrector algorithm for substructure hybrid test system proceedings of the ninth pacific”, Conference on Earthquake Engineering, 2011.
    [17]Lu, L.Y., Lee, T.Y., and Yeh, S.W.,“Theory and experimental study for sliding isolators with variable curvature”, Earthquake Engineering & Structural Dynamics, 2011.
    [18]Chopra, K.,“Dynamics of structures: theory and applications to earthquake engineering (4th Edition)”, Pearson, 2011.
    [19]Lu, L.Y., Lee, T.Y., Juang, S.Y., and Yeh, S.W.,“Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study”, Engineering Structures, 2013.
    [20]Abdalla, O., Hammad, S.A., and Yousef, H.A.,“A framework for real time hardware in the loop simulation for control design”, 2014.
    [21]Prabhu, K.M.,“Window functions and their applications in signal processing”, Taylor & Francis, 2014.
    [22]Chu, S.Y. and Ho, C.,“Interaction effects of detuning and time-delay on generalized hybrid mass damper systems”, Architecture Science, no. 12, pp. 19-33, 2015.
    [23]Wang, J.T., Gui, Y., Zhu, F., Jin, F., and Zhou, M.X.,“Real-time hybrid simulation of multi-story structures installed with tuned liquid damper”, Structural Control and Health Monitoring, 2016.
    [24]Zhang, R., Lauenstein, P.V., and Phillips, B.M.,“Real-time hybrid simulation of a shear building with a uni-axial shake table”, Engineering Structures, 2016.
    [25]Chu, S.Y., Lu, L.Y., and Yeh, S.W.,“Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table”, Structural Control and Health Monitoring, 2018.
    [26]Tian, Y., Shao, X., Zhou, H., and Wang, T.,“Advances in real-time hybrid testing technology for shaking table substructure testing”, Frontiers in Built Environment, 2020.
    [27]顏呈璁,「多重取樣量測對擬動態試驗誤差之影響」,碩士論文,國立成功大學土木工程研究所,台南市,2009。
    [28]吳依寰,「摩擦型阻尼器系統之擬動態試驗與振動台驗證」,碩士論文,國立成功大學土木工程研究所,台南市,2011。
    [29]朱凱業,「多項式變曲率滑動支承之混合實驗」,碩士論文,國立成功大學土木工程研究所,台南市,2013。
    [30]許敬昀,「摩擦型調諧質量阻尼器系統之混合實驗驗證」,碩士論文,國立成功大學土木工程研究所,台南市,2014。
    [31]賈博宇,「振動台效能對PFCMD即時複合實驗之影響探討」,碩士論文,國立成功大學土木工程研究所,台南市,2016。
    [32]林煒松,「採用不同振動台進行即時複合實驗之效能探討」,碩士論文,國立成功大學土木工程研究所,台南市,2019。
    [33]黃智遠,「配置LSCMD多自由度系統之類比式硬體迴路模擬試驗碩士論文」,國立成功大學土木工程研究所,台南市,2019。
    [34]鄧孟澤,「應用數位式硬體迴路模擬試驗進行即時振動台複合實驗誤差之階段性探討」,碩士論文,國立成功大學土木工程研究所,台南市,2019。
    [35]黃百誼、賴晉達、柴駿甫、林凡茹,「關鍵零組件測試系統介紹」,國家地震工程研究中心年度研究成果報告(108期),2019。
    [36]林旺春、劉瓊琳、楊卓諺、游忠翰、汪向榮、黃震興,「雙軸向動態試驗系統之基本參數研究與探討」,國家地震工程研究中心研究成果報告(107期),121-124,2019。
    [37]馬士勛,「配置PSIVC系統之即時類比式硬體迴路模擬與複合試驗」,碩士論文,國立成功大學土木工程研究所,台南市,2020。
    [38]林亮宇,「應用即時硬體迴路模擬進行複合試驗之雛型規劃與檢討碩士論文」,國立成功大學土木工程研究所,台南市,2020。
    [39]賴畇希,「多項式變曲率滑動支承之類比式硬體迴路模擬與應用多軸向振動台進行即時複合試驗研究」,碩士論文,國立成功大學土木工程研究所,台南市,2021。
    [40]徐浩翔,「配置主動質量阻尼器之多項式變曲率隔震系統隔震位移控制效能驗證」,碩士論文,國立成功大學土木工程研究所,台南市,2021。
    [41]羅仕杰,「記憶體共享光纖網路設備於即時擬動態試驗之初步研究」,碩士論文,國立暨南國際大學土木工程學系,南投縣,2005。
    [42]陳俊宏,「考慮土壤結構互制效應之核電廠圍阻體結構健康診斷研究」,碩士論文,國立成功大學土木工程學系,台南市,2021。
    [43]謝臻德,「多項式變曲率TMD於高樓之多軸向振動台即時複合實驗」,碩士論文,國立成功大學土木工程研究所,台南市,2022。

    無法下載圖示 校內:2027-09-21公開
    校外:2027-09-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE