簡易檢索 / 詳目顯示

研究生: 范明日
Pham, Minh-Nhat
論文名稱: 以氨酯鏈結提昇鹽類解離之網絡化高分子電解質在全固態鋰電池之應用
Networked Polymer Electrolytes with Salt-Dissociating Urethane Linkage for All-Solid-State Lithium Batteries
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 61
外文關鍵詞: urethane linkage, self-extinguishing, solid polymer electrolyte, networked polymer electrolyte, lithium battery
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This work reports a networked solid polymer electrolyte (N-u-SPE) for lithium-ion batteries (LIBs), which comprises a lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and poly(ethylene oxide) (PEO) chains cross-linked through poly(hexamethylene diisocyanate) (PHDI) by forming of urethane linkage. The networked configuration prevents crystallization between PEO chains, maintains high segmental motion and enhances the dissociation degree of lithium salt. The N-u-SPE exhibits a high ionic conductivity of 1.0 x 10-4 S cm-1 at 25 oC and small activation energy of 3.5 kJ mol-1 for ion motion. The N-u-SPE also exhibited fire self-extinguishing feature, which is beneficial to the safety of the resulting LIBs. A battery assembled using Li metal anode, LiFePO4 cathode, and the N-u-SPE, i.e., Li|N-u-SPE|LiFePO4, delivered a capacity of 158 mAh g-1 at 0.1 C (based on the theoretical capacity of LiFePO4, 170 mAh g-1) at room temperature and could be charged and discharged at 3 C. This battery exhibited excellent charge-discharge cycling stability, remaining approximate 140 mAh g-1 in capacity after 100 cycles of charge-discharge at 0.3 C. This work demonstrates the superiority of urethane linkages in suppressing crystallization tendency, enhancing lithium salt dissociation, ionic conductivity and mechanical strength to PEO-based SPEs for room temperature LIBs.

    Abstract I Acknowledgement II Contents III List of Figures VI List of Tables IX List of Schemes X Abbreviations and Symbols XI 1. Introduction: Lithium ion batteries (LIBs) 1 1.1. Why LIBs? 1 1.2. Working principle of LIBs 2 1.3. Cathode materials 3 1.3.1. Layered compounds 4 1.3.2. Spinel compounds 5 1.3.3. Olivine compounds 5 1.4. Anode materials 6 1.4.1. Carbon based materials 7 1.4.2. Lithium titanium oxide (LTO) 8 1.4.3. Alloying materials 9 1.5. Electrolytes 9 1.5.1. Liquid electrolytes 9 1.5.2. Gel electrolytes 11 1.5.3. Solid electrolytes 12 1.5.3.1.Ceramics 12 1.5.3.2.Solid polymer electrolytes 13 2. Motivation 14 3. Experimental section 19 3.1. Materials 19 3.2. Preparation of N-u-SPE and L-SPE 20 3.3. Electrode Synthesis and Battery Assembly 20 3.4. Analyses and Measurements 21 3.4.1. Physical and chemical characterizations 21 3.4.1.1. Fourier transform infrared spectroscopy (FTIR) 21 3.4.1.2.Nuclear magnetic resonance (NMR) 21 3.4.1.3.Raman spectroscopy 22 3.4.1.4.X-ray diffraction (XRD) 22 3.4.1.5.Differential scanning calorimetry (DSC) 23 3.4.1.6.Thermogravimetric analysis (TGA) 23 3.4.2. Electrochemical analyzing methods 23 3.4.2.1.Linear sweep voltage (LSV) 23 3.4.2.2.Electrochemical impedance spectroscopy (EIS) 24 3.4.2.3.Galvanostatic charge-discharge 25 3.4.2.4.Li plating-stripping 26 4. Results and Discussion 26 4.1. Physical and Chemical Properties 26 4.2. Electrochemical Properties 38 4.3. Battery Performance 42 5. Conclusion 45 6. References 46

    [1] X. Luo, J. Wang, M. Dooner, J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation". Applied energy 2015, 137, 511-536.
    [2] B. Dunn, H. Kamath, J.-M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices". Science 2011, 334, 928-935.
    [3] B. Xu, D. Qian, Z. Wang, Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries". Materials Science and Engineering: R: Reports 2012, 73, 51-65.
    [4] N. Nitta, F. Wu, J. T. Lee, G. Yushin, "Li-ion battery materials: present and future". Materials Today 2015, 18, 252-264.
    [5] A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci, "A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications". Journal of power sources 2003, 115, 171-178.
    [6] E. Rossen, C. D. W. Jones, J. R. Dahn, "Structure and electrochemistry of LixMnyNi1−yO2". Solid State Ionics 1992, 57, 311-318.
    [7] K. M. Shaju, P. G. Bruce, "Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries". Advanced Materials 2006, 18, 2330-2334.
    [8] D. Aurbach, M. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, R. Oesten, "Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques". Journal of Power Sources 1999, 81, 472-479.
    [9] C. J. Orendorff, D. H. Doughty, "Lithium ion battery safety". The Electrochemical Society Interface 2012, 21, 35-35.
    [10] A. Yamada, S.-C. Chung, "Crystal Chemistry of the Olivine-Type Li (Mn y Fe1− y) PO 4 and (Mn y Fe1− y) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries". Journal of the Electrochemical Society 2001, 148, A960-A967.
    [11] J. Wolfenstine, J. Allen, "LiNiPO4–LiCoPO4 solid solutions as cathodes". Journal of Power Sources 2004, 136, 150-153.
    [12] J. Wolfenstine, J. Allen, "Ni3+/Ni2+ redox potential in LiNiPO4". Journal of power sources 2005, 142, 389-390.
    [13] H. Gwon, D. H. Seo, S. W. Kim, J. Kim, K. Kang, "Combined First‐Principle Calculations and Experimental Study on Multi‐Component Olivine Cathode for Lithium Rechargeable Batteries". Advanced Functional Materials 2009, 19, 3285-3292.
    [14] Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K. Furukawa, A. Yamada, "General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes". ACS applied materials & interfaces 2014, 6, 10892-10899.
    [15] K. Teshima, H. Inagaki, S. Tanaka, K. Yubuta, M. Hozumi, K. Kohama, T. Shishido, S. Oishi, "Growth of well-developed Li4Ti5O12 crystals by the cooling of a sodium chloride flux". Crystal growth & design 2011, 11, 4401-4405.
    [16] M. K. Chan, C. Wolverton, J. P. Greeley, "First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon". Journal of the American Chemical Society 2012, 134, 14362-14374.
    [17] P. Verma, P. Maire, P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries". Electrochimica Acta 2010, 55, 6332-6341.
    [18] N. A. Kaskhedikar, J. Maier, "Lithium storage in carbon nanostructures". Advanced Materials 2009, 21, 2664-2680.
    [19] S. Scharner, W. Weppner, P. Schmid‐Beurmann, "Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel". Journal of the Electrochemical Society 1999, 146, 857.
    [20] J.-F. Colin, V. Godbole, P. Novák, "In situ neutron diffraction study of Li insertion in Li4Ti5O12". Electrochemistry communications 2010, 12, 804-807.
    [21] K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C. M. Julien, "Safe and fast-charging Li-ion battery with long shelf life for power applications". Journal of power sources 2011, 196, 3949-3954.
    [22] C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, "Li-alloy based anode materials for Li secondary batteries". Chemical Society Reviews 2010, 39, 3115-3141.
    [23] M. Obrovac, V. Chevrier, "Alloy negative electrodes for Li-ion batteries". Chemical reviews 2014, 114, 11444-11502.
    [24] W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries". Journal of Power Sources 2011, 196, 13-24.
    [25] G. K. Simon, T. Goswami, "Improving anodes for lithium ion batteries". Metallurgical and Materials Transactions A 2011, 42, 231-238.
    [26] R. A. Huggins, "Lithium alloy negative electrodes". Journal of Power Sources 1999, 81, 13-19.
    [27] L. Beaulieu, K. Eberman, R. Turner, L. Krause, J. Dahn, "Colossal reversible volume changes in lithium alloys". Electrochemical and Solid-State Letters 2001, 4, A137-A140.
    [28] C. K. Chan, R. Ruffo, S. S. Hong, Y. Cui, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes". Journal of Power Sources 2009, 189, 1132-1140.
    [29] R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, Y. Cui, "Impedance analysis of silicon nanowire lithium ion battery anodes". The Journal of Physical Chemistry C 2009, 113, 11390-11398.
    [30] K. Xu, "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries". Chemical Reviews 2004, 104, 4303-4418.
    [31] J. O. Besenhard, M. Winter, J. Yang, W. Biberacher, "Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes". Journal of Power Sources 1995, 54, 228-231.
    [32] R. Fong, U. Von Sacken, J. R. Dahn, "Studies of lithium intercalation into carbons using nonaqueous electrochemical cells". Journal of The Electrochemical Society 1990, 137, 2009.
    [33] C. Yang, Y. Wang, C. Wan, "Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte". Journal of power sources 1998, 72, 66-70.
    [34] S.-H. Wang, Y.-Y. Lin, C.-Y. Teng, Y.-M. Chen, P.-L. Kuo, Y.-L. Lee, C.-T. Hsieh, H. Teng, "Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries". ACS applied materials & interfaces 2016, 8, 14776-14787.
    [35] S.-H. Wang, P.-L. Kuo, C.-T. Hsieh, H. Teng, "Design of poly (acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries". ACS applied materials & interfaces 2014, 6, 19360-19370.
    [36] A. Manuel Stephan, "Review on gel polymer electrolytes for lithium batteries". European Polymer Journal 2006, 42, 21-42.
    [37] S. Liang, W. Yan, X. Wu, Y. Zhang, Y. Zhu, H. Wang, Y. Wu, "Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance". Solid State Ionics 2018, 318, 2-18.
    [38] E. Quartarone, P. Mustarelli, "Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives". Chem Soc Rev 2011, 40, 2525-40.
    [39] D. Lin, Y. Liu, Y. Cui, "Reviving the lithium metal anode for high-energy batteries". Nature nanotechnology 2017, 12, 194.
    [40] N. Suzuki, T. Inaba, T. Shiga, "Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O". Thin Solid Films 2012, 520, 1821-1825.
    [41] A. Martinez-Juarez, C. Pecharromán, J. E. Iglesias, J. M. Rojo, "Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM ‘(PO4) 3; M, M ‘= Ge, Ti, Sn, Hf". The Journal of Physical Chemistry B 1998, 102, 372-375.
    [42] H. Peng, Q. Wu, L. Xiao, "Low temperature synthesis of Li 5 La 3 Nb 2 O 12 with cubic garnet-type structure by sol–gel process". Journal of sol-gel science and technology 2013, 66, 175-179.
    [43] M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, Y. Kawamoto, "Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system". Journal of Solid State Chemistry 2002, 168, 140-148.
    [44] M. Armand, J. Chabagno, M. Duclot, "Poly-ethers as solid electrolytes". Fast Ion Transport in Solids 1979, 131.
    [45] C. Vachon, C. Labreche, A. Vallee, S. Besner, M. Dumont, J. Prud'Homme, "Microphase separation and conductivity behavior of poly (propylene oxide)-lithium salt electrolytes". Macromolecules 1995, 28, 5585-5594.
    [46] R. Hooper, L. J. Lyons, M. K. Mapes, D. Schumacher, D. A. Moline, R. West, "Highly conductive siloxane polymers". Macromolecules 2001, 34, 931-936.
    [47] E. Spiegel, K. Adamic, B. Williams, A. Sammells, "Solvation of lithium salts within single-phase dimethyl siloxane bisphenol-A carbonate block copolymer". Polymer 2000, 41, 3365-3369.
    [48] C. P. Fonseca, D. S. Rosa, F. Gaboardi, S. Neves, "Development of a biodegradable polymer electrolyte for rechargeable batteries". Journal of power sources 2006, 155, 381-384.
    [49] F. Zheng, M. Kotobuki, S. Song, M. O. Lai, L. Lu, "Review on solid electrolytes for all-solid-state lithium-ion batteries". Journal of Power Sources 2018, 389, 198-213.
    [50] K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, "practical challenges hindering the development of solid state Li ion batteries". Journal of The Electrochemical Society 2017, 164, A1731.
    [51] L. Long, S. Wang, M. Xiao, Y. Meng, "Polymer electrolytes for lithium polymer batteries". Journal of Materials Chemistry A 2016, 4, 10038-10069.
    [52] J. Mindemark, M. J. Lacey, T. Bowden, D. Brandell, "Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes". Progress in Polymer Science 2018, 81, 114-143.
    [53] K. Kimura, M. Yajima, Y. Tominaga, "A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature". Electrochemistry Communications 2016, 66, 46-48.
    [54] W. Wei, Z. Xu, L. Xu, X. Zhang, H. Xiong, J. Yang, "Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries". ACS Applied Energy Materials 2018, 1, 6769-6773.
    [55] Y. Cui, X. Liang, J. Chai, Z. Cui, Q. Wang, W. He, X. Liu, Z. Liu, G. Cui, J. Feng, "High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis". Adv Sci (Weinh) 2017, 4, 1700174.
    [56] J. Zhang, C. Ma, J. Liu, L. Chen, A. Pan, W. Wei, "Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery". Journal of Membrane Science 2016, 509, 138-148.
    [57] S. Suriyakumar, M. Kanagaraj, N. Angulakshmi, M. Kathiresan, K. S. Nahm, M. Walkowiak, K. Wasiński, P. Półrolniczak, A. M. Stephan, "Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks". RSC Advances 2016, 6, 97180-97186.
    [58] J. Zhang, L. Yue, P. Hu, Z. Liu, B. Qin, B. Zhang, Q. Wang, G. Ding, C. Zhang, X. Zhou, J. Yao, G. Cui, L. Chen, "Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries". Sci Rep 2014, 4, 6272.
    [59] J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Q. Chen, J. Qin, Y. Cui, "Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries". Nat Nanotechnol 2019, 14, 705-711.
    [60] Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, "Composite Polymer Electrolyte Incorporating Metal-Organic Framework Nanosheets with Improved Electrochemical Stability for All-Solid-State Li Metal Batteries". ACS Appl Mater Interfaces 2020, 12, 20514-20521.
    [61] P. V. Wright, "Electrical conductivity in ionic complexes of poly (ethylene oxide)". British polymer journal 1975, 7, 319-327.
    [62] C. Berthier, W. Gorecki, M. Minier, M. Armand, J. Chabagno, P. Rigaud, "Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts". Solid State Ionics 1983, 11, 91-95.
    [63] M. Michael, M. Jacob, S. Prabaharan, S. Radhakrishna, "Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers". Solid State Ionics 1997, 98, 167-174.
    [64] Y.-T. Kim, E. S. Smotkin, "The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries". Solid State Ionics 2002, 149, 29-37.
    [65] X.-L. Wu, S. Xin, H.-H. Seo, J. Kim, Y.-G. Guo, J.-S. Lee, "Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer". Solid State Ionics 2011, 186, 1-6.
    [66] A. R. Polu, H.-W. Rhee, "Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries". international journal of hydrogen energy 2017, 42, 7212-7219.
    [67] D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, Y. Cui, "High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)". Nano letters 2016, 16, 459-465.
    [68] S. Li, K. Jiang, J. Wang, C. Zuo, Y. H. Jo, D. He, X. Xie, Z. Xue, "Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries". Macromolecules 2019, 52, 7234-7243.
    [69] A. Wang, H. Xu, Q. Zhou, X. Liu, Z. Li, R. Gao, N. Wu, Y. Guo, H. Li, L. Zhang, "A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties". Electrochimica Acta 2016, 212, 372-379.
    [70] Y. Tong, H. Lyu, Y. Xu, B. P. Thapaliya, P. Li, X.-G. Sun, S. Dai, "All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries". Journal of Materials Chemistry A 2018, 6, 14847-14855.
    [71] A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, "Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries". Phys Chem Chem Phys 2013, 15, 20054-63.
    [72] W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman, M. Anouti, "Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors". The Journal of Physical Chemistry C 2014, 118, 4033-4042.
    [73] F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang, "Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors". Journal of Power Sources 2008, 184, 402-407.
    [74] E. Sharmin, F. Zafar, "Polyurethane: An Introduction". 2012, DOI: 10.5772/51663.
    [75] D. G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu, Y. Jiang, T. Manika, J. Lopez, H. Yan, K. Liu, "Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors". Nature communications 2019, 10, 1-11.
    [76] R. Nyquist, G. Jewett, "IR and NMR correlations for alkyl isocyanates". Applied spectroscopy 1992, 46, 841-842.
    [77] A. Pattanayak, S. C. Jana, "Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties". Polymer 2005, 46, 5183-5193.
    [78] Y. Song, Y. Liu, T. Qi, G. L. Li, "Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions". Angew Chem Int Ed Engl 2018, 57, 13838-13842.
    [79] W. C. Chen, H. H. Chen, T. C. Wen, M. Digar, A. Gopalan, "Morphology and ionic conductivity of thermoplastic polyurethane electrolytes". Journal of applied polymer science 2004, 91, 1154-1167.
    [80] A. Alemdar, N. Gungor, O. I. Ece, O. Atici, "The rheological properties and characterization of bentonite dispersions in the presence of non-ionic polymer PEG". Journal of Materials Science 2005, 40, 171-177.
    [81] N. S. Vrandečić, M. Erceg, M. Jakić, I. Klarić, "Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight". Thermochimica Acta 2010, 498, 71-80.
    [82] S. Wen, T. Richardson, D. Ghantous, K. Striebel, P. Ross, E. Cairns, "FTIR characterization of PEO+ LiN (CF3SO2) 2 electrolytes". Journal of Electroanalytical Chemistry 1996, 408, 113-118.
    [83] P. Santhosh, A. Gopalan, T. Vasudevan, K.-P. Lee, "Evaluation of a cross-linked polyurethane acrylate as polymer electrolyte for lithium batteries". Materials Research Bulletin 2006, 41, 1023-1037.
    [84] H.-L. Wang, H.-M. Kao, T.-C. Wen, "Direct 7Li NMR spectral evidence for different Li+ local environments in a polyether poly (urethane urea) electrolyte". Macromolecules 2000, 33, 6910-6912.
    [85] S. Désilets, S. Villeneuve, M. Laviolette, M. Auger, "13C-NMR spectroscopy study of polyurethane obtained from azide hydroxyl-terminated polymer cured with isophorone diisocyanate (IPDI)". Journal of Polymer Science Part A: Polymer Chemistry 1997, 35, 2991-2998.
    [86] C. Delides, R. A. Pethrick, A. V. Cunliffe, P. G. Klein, "Characterization of polyurethane elastomers by 13C n.m.r. spectroscopy". Polymer 1981, 22, 1205-1210.
    [87] H.-L. Wang, H.-M. Kao, M. Digar, T.-C. Wen, "FTIR and solid state 13C NMR studies on the interaction of lithium cations with polyether poly (urethane urea)". Macromolecules 2001, 34, 529-537.
    [88] B. Tan, Z. Huang, Z. Yin, X. Min, Y. g. Liu, X. Wu, M. Fang, "Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato". RSC advances 2016, 6, 15821-15830.
    [89] R. Blanga, M. Goor, L. Burstein, Y. Rosenberg, A. Gladkich, D. Logvinuk, I. Shechtman, D. Golodnitsky, "The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries". Journal of Solid State Electrochemistry 2016, 20, 3393-3404.
    [90] Y. H. Jo, S. Li, C. Zuo, Y. Zhang, H. Gan, S. Li, L. Yu, D. He, X. Xie, Z. Xue, "Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries". Macromolecules 2020, 53, 1024-1032.
    [91] R. He, T. Kyu, "Effect of Plasticization on Ionic Conductivity Enhancement in Relation to Glass Transition Temperature of Crosslinked Polymer Electrolyte Membranes". Macromolecules 2016, 49, 5637-5648.
    [92] H. Zhang, C. Liu, L. Zheng, F. Xu, W. Feng, H. Li, X. Huang, M. Armand, J. Nie, Z. Zhou, "Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte". Electrochimica Acta 2014, 133, 529-538.
    [93] C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D. G. Ivey, W. Wei, "High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers". Adv Sci (Weinh) 2018, 5, 1700996.
    [94] E. Calahorra, M. Cortazar, G. Guzman, "Thermal decomposition of poly (ethylene oxide) poly (methyl methacrylate), and their mixtures by thermogravimetric method". Journal of Polymer Science, Polymer Letters Edition 1985, 23, 257-260.
    [95] G. Jones, A. McGhie, G. Farrington, "Studies of the stability of poly (ethylene oxide) and PEO-based solid electrolytes using thermogravimetry-mass spectrometry". Macromolecules 1991, 24, 3285-3290.
    [96] L. Costa, A. M. Gad, G. Camino, G. G. Cameron, M. Y. Qureshi, "Thermal and thermooxidative degradation of poly (ethylene oxide)-metal salt complexes". Macromolecules 1992, 25, 5512-5518.
    [97] R. Aseeva, G. Zaikov, presented at Makromolekulare Chemie. Macromolecular Symposia 1993.
    [98] X. Chen, Y. Hu, L. Song, "Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon". Polymer Engineering & Science 2008, 48, 116-123.
    [99] N. Grassie, M. Zulfiqar, "The Effect of the Fire Retardant, Ammonium Polyphosphate, on the Thermal Degradation of a Polyurethane.(Retroactive Coverage)". Applied Science Publishers Ltd., Developments in Polymer Stabilisation--1 1979, 197-217.
    [100] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, "Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries". Advanced Energy Materials 2018, 8.
    [101] X. Ollivrin, N. Farin, F. Alloin, J. Le Nest, J. Sanchez, "Physical properties of amorphous polyether networks". Electrochimica acta 1998, 43, 1257-1262.
    [102] M. Keller, G. B. Appetecchi, G.-T. Kim, V. Sharova, M. Schneider, J. Schuhmacher, A. Roters, S. Passerini, "Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li 7 La 3 Zr 2 O 12 in P(EO) 15 LiTFSI". Journal of Power Sources 2017, 353, 287-297.
    [103] Y. Zhao, Z. Huang, S. Chen, B. Chen, J. Yang, Q. Zhang, F. Ding, Y. Chen, X. Xu, "A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries". Solid State Ionics 2016, 295, 65-71.
    [104] X. Fu, D. Yu, J. Zhou, S. Li, X. Gao, Y. Han, P. Qi, X. Feng, B. Wang, "Inorganic and organic hybrid solid electrolytes for lithium-ion batteries". CrystEngComm 2016, 18, 4236-4258.
    [105] S. H. Wang, Y. Y. Lin, C. Y. Teng, Y. M. Chen, P. L. Kuo, Y. L. Lee, C. T. Hsieh, H. Teng, "Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries". ACS Appl Mater Interfaces 2016, 8, 14776-87.
    [106] Z. Zhang, J. Jin, F. Bautista, L. Lyons, N. Shariatzadeh, D. Sherlock, K. Amine, R. West, "Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes". Solid State Ionics 2004, 170, 233-238.
    [107] P. P. Chu, M. J. Reddy, H. Kao, "Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li". Solid State Ionics 2003, 156, 141-153.
    [108] J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K. Priya Dasan, "Studies on the morphology and conductivity of PEO/LiClO4". Materials Today: Proceedings 2016, 3, 1451-1459.
    [109] Y. Xia, T. Fujieda, K. Tatsumi, P. P. Prosini, T. Sakai, "Thermal and electrochemical stability of cathode materials in solid polymer electrolyte". Journal of Power Sources 2001, 92, 234-243.
    [110] J. Ma, Z. Liu, B. Chen, L. Wang, L. Yue, H. Liu, J. Zhang, Z. Liu, G. Cui, "A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries". Journal of The Electrochemical Society 2017, 164, A3454-A3461.
    [111] J. Evans, C. A. Vincent, P. G. Bruce, "Electrochemical measurement of transference numbers in polymer electrolytes". Polymer 1987, 28, 2324-2328.
    [112] Y. Zhao, R. Tao, T. Fujinami, "Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate". Electrochimica acta 2006, 51, 6451-6455.
    [113] M. M. Hiller, M. Joost, H. J. Gores, S. Passerini, H. D. Wiemhöfer, "The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes". Electrochimica Acta 2013, 114, 21-29.
    [114] D. Devaux, R. Bouchet, D. Glé, R. Denoyel, "Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups". Solid State Ionics 2012, 227, 119-127.
    [115] J. Mindemark, B. Sun, E. Törmä, D. Brandell, "High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature". Journal of Power Sources 2015, 298, 166-170.

    無法下載圖示 校內:2025-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE