簡易檢索 / 詳目顯示

研究生: 楊勝貿
Yang, Sheng-Mao
論文名稱: 鉍硼鋅矽玻璃對鐵矽鉻合金與鎳銅鋅鐵氧磁體基板之黏接及其特性之研究
A study on the glass sealing of FeSiCr alloy powder and NiCuZn ferrites using Bi-B-Zn-Si glasses
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 銅析出鐵矽鉻合金粉鎳銅鋅鐵氧磁體黏接玻璃氧化還原黏接強度
外文關鍵詞: CuO segregation, FeSiCr alloy powder, NiCuZn ferrites, sealing glass, redox, adhesion strength
相關次數: 點閱:128下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同氧化銅含量之鉍硼鋅矽玻璃對黏接鐵矽鉻合金粉與鎳銅鋅鐵氧磁體基板間之界面反應、顯微結構與玻璃黏接強度的影響。實驗結果發現,在熱處理溫度750°C下,鎳銅鋅鐵氧磁體基板與玻璃介面是主要藉由玻璃升溫時,轉變成熔融態滲入基材孔隙中,進行物理方式黏接;而在鐵矽鉻合金與玻璃介面則是由於鐵矽鉻合金組成中的鐵溶入玻璃內部產生氧化反應,促使玻璃中之銅離子產生還原反應,生成金屬銅的析出,因而同時以化學性及物理性黏接。
    玻璃中添加氧化銅除了有助於增加潤濕性,提升玻璃的附著黏接性外,在熱處理過程會還原成小顆粒的金屬銅析出在鐵矽鉻合金與玻璃介面處,經由維氏硬度機壓痕試驗,發現此析出物有助於抑制裂痕延伸,此外,因發生氧化還原反應,使得玻璃微結構有孔洞的產生,而降低玻璃黏接強度。而當熱處理溫度提升至800°C、850°C,會促使金屬銅之析出量增多,也有助於玻璃黏接強度。

    The effects of CuO content in Bi-B-Si-Zn glass on the interfacial reaction between the glasses and FeSiCr alloy powder and NiCuZn ferrites, microstructure and bonding strength were investigated. It was observed that the glass can be physically bonded with NiCuZn ferrites by the impregnation of glass melt into the pores of NiCuZn ferrites. For the interface between FeSiCr alloy and glass, the iron in FeSiCr alloy dissolved into glass and was oxidized into Fe3+ during heating. To maintain charge neutrality, the copper ions in the glass were reduced to elemental copper near the interface, which led to the chemical bonding and the physical bonding between FeSiCr alloy and glass at 750°C under air atmosphere. However, the addition of CuO in the glasses could not only increase wettability and adhesion but also be reduced to copper during heat treatment between FeSiCr alloy and glass. Due to redox reaction, the spherical copper-rich precipitates near the interface could inhibit the crack propagation by Vickers indentations but the presence of the pore in the glass layer would decrease the adhesion strength. Moreover, the amount of element copper precipitates increased as the heat treatment temperature was raised to 800°C and 850°C, leading to the increase in the adhesion strength between glass and FeSiCr alloy.

    摘要 I 致謝 XV 目錄 XVI 表目錄 XIX 圖目錄 XXI 第一章、 緒論 1 1-1前言 1 1-2研究目的 1 第二章、 前人研究及理論基礎 2 2-1積層電感 2 2-1-1電感之介紹 2 2-1-2積層電感製程 5 2-2鎳銅鋅鐵氧磁體材料 8 2-2-1尖晶石鐵氧磁體結構 9 2-2-2鐵氧磁體之磁性質 12 2-3鐵矽鉻合金材料 13 2-3-1金屬功率電感器 13 2-3-2鐵矽鉻合金氧化機制 14 2-4軟磁材料 15 2-5黏合玻璃(bonding glass) 16 2-5-1黏合溫度 16 2-6低熔點玻璃 17 2-6-1鉛基玻璃 17 2-6-2鉍基玻璃 18 2-7金屬-玻璃之介面反應 18 2-8氧化還原反應 18 2-9殘留應力計算 22 第三章、 實驗方法 23 3-1鎳銅鋅鐵氧磁體基板之製備 23 3-1-1實驗藥品 24 3-2鐵矽鉻合金圓錠之製備 24 3-2-1實驗藥品 25 3-3玻璃膏之製備 25 3-3-1實驗藥品 28 3-4複合元件之製備 29 3-5材料特性分析 30 3-5-1結晶相鑑定分析(XRD) 30 3-5-2熱膨脹分析儀(DIL) 30 3-5-3EPMA介面觀測分析 31 3-5-4SEM微結構之觀察 31 3-5-5XPS介面元素價數偵測 31 3-5-6推拉力測試機 (Push-Pull Testing) 31 3-5-7維氏硬度機(Vickers indentations) 33 第四章、 結果與討論 34 4-1鉍硼鋅矽(Bi-B-Zn-Si base)玻璃之基本性質 34 4-1-1玻璃結晶相 34 4-1-2玻璃之軟化點 35 4-2複合元件之介面反應 36 4-2-1結晶相分析 36 4-2-2多層結構之介面分析 38 4-2-3多層結構之介面反應機制 45 4-3鐵矽鉻合金之鐵擴散至鉍硼矽鋅玻璃中對玻璃之影響 48 4-3-1剖面顯微結構分析 48 4-3-2銅析出之現象 48 4-4玻璃之黏接強度 52 4-4-1推力試驗 52 4-4-2殘留應力對黏接強度之影響 59 4-4-3氧化銅的添加對玻璃黏接強度之影響 63 4-4-4不同溫度對鐵矽鉻合金與玻璃的黏接強度影響 66 第五章、 結論 79 參考文獻 80 附錄 82

    [1]柯文淞,晶片型電子陶瓷材料及元件技術,工業技術研究院,1993年。
    [2]TDK, SMD Pulse Transformer for Ethernet Applications ALT4532 Series, Tech Journal, (2011).
    [3]呂秉軍,離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響,國立成功大學資源工程所,碩士論文,2012年。
    [4]姚壬謙,化學共沉法製備Co2Z鐵氧磁體粉末之生成機構研究,國立成功大學資源工程所,碩士論文,2004年。
    [5]王志方「LTCC產業概況,IBT台灣工商銀行研究中心,2008年。
    [6]M. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to ceramics, 2nd Edition, John Wiley & Sons, New York, (1976).
    [7]金重勳,磁性技術手冊,中華民國磁性技術協會,2002年。
    [8]J. H. Jean and C. H. Lee, “Low-fire NiO-CuO-ZnO Ferrite with Bi2O3,” Jpn. J. Appl. Phys., 38 [6A] 3508–12 (1999).
    [9]山口橋、柳田博明、岡本祥一、近桂一郎、黃忠良,磁性陶瓷,復漢出版社,2001.
    [10]楊朝偉,巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留,國立成功大學材料科學及工程研究所,碩士論文,2006年。
    [11]湯士源、唐敏注,電源模組用金屬功率電感器技術簡介,工業材料雜誌349期,2016年。
    [12]鄭明德,薄型大電流電感器鐵鋅粉末調配之穩健最佳化設計,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。
    [13]S. M. C. Fernandes and L. V. Ramanathan, "Effect of surface deposited rare earth oxide gel characteristics on cyclic oxidation behavior of Fe20-Cr alloys," Mater. Res., 9 [2] 199-203 (2006).
    [14]汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,1994年。
    [15]謝定洲,粗細鐵粉混合比例對壓粉磁蕊磁性質之影響,國立台灣科技大學材料科技研究所,碩士學位論文,2009年。
    [16]陳駿良,硼鉍酸鹽玻璃封膠之研究,國立聯合大學材料科學與工程學系,碩士論文,2016年。
    [17]韋文誠,固態燃料電池技術,高立圖書,台灣,p.190,2013年。
    [18]T. Maeder, "Review of Bi2O3 based glasses for electronics and related applications," Int. Mater. Rev., 58 [1] 3–40 (2013).
    [19]B. S. Kim, E. S. Lin, J. H. Lee and J. J. Kim, "Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3–B2O3–SiO2 glasses," J. Europ. Ceram. Soc., 27 [2–3] 819–24 (2007).
    [20]I. Dyamant, D. Itzhak and J. Hormadaly, "Thermal properties and glass formation in the SiO2–B2O3–Bi2O3–ZnO quaternary system," J. Non-Cryst. Solids., 351 [43–45] 3503–07 (2005).
    [21]K. Matusita, M. Satou, T. Komatsu, T. Nakahara and A. Nitta, "Interface reaction between oxide glasses and Fe-Al-Si magnetic alloy," J. Mater. Sci., 28 [23] 6333–9 (1993).
    [22]H. Seki, K. Satoh, H. Satoh, K. Matusita and R. Sato, "A new adhesion process of glass to metal using the redox reaction," J. Mater. Sci., 31 [18] 4891–8 (1996).
    [23]D. R. Gaskell,“Introduction to the Thermodynamics of Materials.”Baker & Taylor, New York, (2008).
    [24]K. Zeng and D. Rowcliffe, “Experimental Measurement of Residual Stress Field around a Sharp Indentation in Glass,” J. Am. Ceram. Soc., 77 [2] 524–30 (1994).
    [25]Yano T, Ebizuka M, Shibata S and Yamane M, "Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses," J. Electron. Spectrosc. Relat. Phenom., 131-132 133–44 (2003).
    [26]H.-I. Hsiang, B.-J. Lyu, L.-T. Mei and C.-S. Hsi, "Ag precipitation at the free interface of multilayer NiCuZn ferrites/LTCC components," J. Europ. Ceram., 36 [5] 1191–5 (2016).
    [27]A. Barba, C. Clausell, J.C. Jarque and M. Monzó, "ZnO and CuO crystal precipitation in sintering Cu-doped Ni–Zn ferrites. I. Influence of dry relative density and cooling rate," Journal of the Europ. Ceram., 31 [12] 2119–28 (2011).
    [28]M. Okaji, N. Yamada, H. Kato and K. Nara, "Measurements of linear thermal expansion coefficients of copper SRM 736 and some commercially available coppers in the temperature range 20–300 K by means of an absolute interferometric dilatometer," Cryogenics, 37 [5] 251–4 (1997).
    [29]J. W. Fergus, "Review:Sealants for solid oxide fuel cells," J. Power Sources, 147 [1–2] 46–57 (2005).
    [30]J. Töper, J. Mürbe, A. Angermann, and S. Kracunovska, "Soft ferrite materials for multilayer inductors," Int. J. Appl. Ceram. Technol., 3 [6] 455–62 (2006).
    [31]郭文勤,鎳銅鋅鐵氧磁體生胚薄帶製作高深徑比微流道所需之材料及製程研究,國立成功大學資源工程學系,碩士論文,2016年。
    [32]何冠廷,鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究,國立成功大學資源工程學系,碩士論文,2016年。
    [33]O. Rodriguez, A. Matinmanesh, S. Phull, E. H. Schemitsch, P. Zalzal, O. M. Clarkin, M. Papini and M. R. Towler, "Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion," J. Funct. Biomater., 7 [4] 32 (2016).

    下載圖示 校內:2022-07-30公開
    校外:2022-07-30公開
    QR CODE