簡易檢索 / 詳目顯示

研究生: 洪聖富
Hong, Shen-fu
論文名稱: 矩陣三角學的研究
On Trigonometry of Square Matrices
指導教授: 郭堃煌
Kuo, Kung-Hwang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 17
中文關鍵詞: 矩陣三角學
外文關鍵詞: operator trigonometry, numerical range, minmax equality
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    在這篇文章中,最主要我們要討論什麼樣的矩陣A才可以滿足(5)(see this thesis)這個等式,其中total cosine的定義和operator的角度有關,而有關operator的角度的問題在過去已經有很豐富的結果,而我們現在只針對這total cosine的定義所牽涉到的角度問題來做探討。在第一章,我們介紹total sine 和total cosine的定義以及閱讀這篇文章所需的先備知識並且介紹[11]中所有2-by-2矩陣之相關結果。在第二章中,我們討論n-by-n的nonnormal矩陣A能否有 這等式,並且檢驗Minmax equality([8]),而在第三章,我們則討論n-by-n的normal矩陣是否可以滿足此等式。

    Abstract

    In this thesis, we consider what kind of matrices A can make the equality (5) hold? In [11], it is proved that almost 2-by-2 matrices satisfy the equality (5) and we state these results in Chapter1. In chapter2, we show that not all of the n-by-n nonnormal matrices can satisfy the equality by given an example, and this example show that the Minmax equality in [8] is false. Finally, In chapter3, we study this problem on n-by-n normal matrices.

    Contents 1.Introduction 1     2.Nonnormal matrix with size n-by-n     5 3.Normal matrix with size n-by-n 11 REFERENCE 17

    REFERENCE
    [1] E.Aspulund and V.Ptak(1971). A Minmax Inequality for Operators and a Related Numerical Range, Acta Math. 126,53-62.
    [2] C.Davis. Extending the Kantorovic Inequality to Normal Matrices, Linear Algebra. Appl.31:173-177(1980).
    [3]K.Gustatson. Matrix Trigonometry matrix, Lin. Alg. Appl .217:117
    140 (1995).
    [4] K.Gustatson. Operator products and operator angles Notices Amer. Math.Soc. 14:943 (1967).
    [5] K.Gustafson. Operator trigonometry, Linear and Multilinear Algebra 37:139-159 (1994).
    [6] K.Gustatson(1968d). A Min-Max Theorem, Notices Amer. Math. Soc 15,799.
    [7] K.E.Gustafson(1970). The Toeplitz-Hausdorff Theorem for Linear Operators, Proc. Amer. Math. Soc. 25,203-204.
    [8]Karl.E. Gustafson Duggirala K.M. Rao Numerical Range.
    [9] T.I.Seidman. An Identity for normal-like Operators, Isrel J.Math.7:249-253(1969).
    [10] M.H.Stone(1932). Linear Transformation in Hilbert space, American Mathematical Society, R.I.
    [11] I Yin Wang. Trigonometry of two-by-two matrices. National Chen kung University 2006.

    下載圖示
    2007-08-16公開
    QR CODE