| 研究生: |
黎巧薇 Li, Chiao-Wei |
|---|---|
| 論文名稱: |
鈷電解質染料敏化太陽能電池於室內光照條件之優化與應用 Optimization and Application of Cobalt-based Dye-Sensitized Solar Cells under Indoor Lighting Condition |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 染料敏化太陽能電池 、鈷氧化還原對 、室內光發電 |
| 外文關鍵詞: | Dye-Sensitized Solar Cells,DSSC, Cobalt redox, Indoor lighting |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在增進染料敏化太陽能電池於室內光照條件下之光電轉換效率。選用具有較正氧化還原電位、低競爭吸光之鈷氧化還原對做為電解質系統,結合高消光係數之MK-2染料作為光敏化劑,並藉由工作電極的前、後處理,以及膠態電解質中奈米粒子的添加來改善元件轉換效率。首先利用乙氰(AN)溶劑製備而成的液態電解質來探討工作電極前、後處理對元件效能之影響。研究結果顯示,在網印二氧化鈦薄膜前先以噴霧熱解法對FTO導電玻璃進行前處理,形成一層緻密的TiO2阻擋層,可以有效抑制鈷氧化還原對和導電玻璃上之電子發生再結合反應,提升元件短路電流、開路電壓與填充因子,元件輸出功率在200-lux光強之T5燈管照射下可提升至9.44 µW/cm2。若將網印後的二氧化鈦薄膜再利用四氯化鈦溶液(TiCl4,aq)浸泡後處理後,可以進一步改善電子於二氧化鈦薄膜的傳輸,提升元件之電子收集率及短路電流大幅上升,因此元件輸出功率可再提升至11.56 µW/cm2。本研究亦比較不同電解質溶劑對元件效能之影響,結果顯示選用穩定性較高且不會發生染料脫附之3-甲氧基丙腈 (3-Methoxypropionitrile, MPN)溶劑所製備而成的元件,元件輸出功率又進一步提升至12.44 µW/cm2。接著添加膠化劑—聚偏二氟乙烯-三氯乙烯(Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)以及4wt% ZnO奈米粒子於MPN鈷液態電解質中製備出膠態電解質,能夠使元件開路電壓大幅提升,輸出功率高達13.12 µW/cm2。將上述液態、膠態,與添加4wt% ZnO奈米粒子之膠態三種元件置於室溫以及室內光200-lux下持續照光1000小時後,三者元件皆可維持將近100%之初始效率。
The purpose of this study is to improve the conversion efficiency of dye-sensitized solar cells (DSSCs) under indoor lighting condition. DSSCs based on the cobalt redox couples and commercial MK-2 dye are fabricated, and several strategies are adopted to improve the photovoltaic performance. The results show that the compact layer deposited onto FTO substrates plays a crucial role in inhibiting the charge recombination between the FTO and cobalt redox couples. When acetonitrile (AN) is used as the solvent of the liquid electrolyte, the DSSC containing a thick blocking layer prepared by spray pyrolysis shows an output power of 9.44 µW/cm2 under 200-lux illumination of T5 light. Furthermore, the electron transport in the TiO2 matrices can be enhanced by using the TiO2 films with TiCl4 post-treatment, leading to a higher output power of 11.56 µW/cm2. The effect of different electrolyte solvent is also compared. The results show that the output power can achieve 12.44 µW/cm2 when the 3-methoxypropionitrile (MPN) solvent is utilized. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were utilized as the gelator and nano-fillers, respectively, to prepare the gel electrolyte. The results show that the presence of ZnO nanoparticles can significantly increase the output power to a value of 13.12 µW/cm2, which is ascribed to ZnO effects on the change of TiO2 conduction band level, as well as the inhibition of charge recombination at the TiO2/electrolyte interface. Finally, the stability tests show that the output power of liquid and gel-state cells can maintain 100% of their initial values after 1000 hours of 200-lux illumination.
[1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
[2] B. O’Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film," Nature, vol. 353, pp. 737-740, 1991.
[3] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
[4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, pp. 6595-6663, 2010.
[5] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
[6] B. Wang and L. L. Kerr, "Dye sensitized solar cells on paper substrates," Solar Energy Materials and Solar Cells, vol. 95, pp. 2531-2535, 2011.
[7] H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, pp. 30-36, 2010.
[8] Y. Y. Kuo and C. H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 337-343, 2013.
[9] S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, pp. 4004-4006, 2006.
[10] C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, vol. 21, pp. 5114-5119, 2011.
[11] G. R. R. A. K. K. Tennakone, I. R. M. Kottegoda and V. P. S. Perera, "An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc," Chemical Communications, pp. 15-16, 1999.
[12] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
[13] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, et al., "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes," The Journal of Physical Chemistry B, vol. 101, pp. 2598-2601, 1997.
[14] X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications," Nano Letters, vol. 8, pp. 3781-3786, 2008.
[15] O. K. Varghese, M. Paulose, and C. A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells," Nature Nanotechnology, vol. 4, pp. 592-597, 2009.
[16] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," The Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, 2006.
[17] L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, et al., "Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells," Advanced Materials, vol. 17, pp. 813-815, 2005.
[18] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, et al., "Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells," Progress in photovoltaics: research and applications, vol. 15, pp. 603-612, 2007.
[19] T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, vol. 151, pp. A1767-A1773, 2004.
[20] W. W. Yu and X. G. Peng, "Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers," Angewandte Chemie-International Edition, vol. 41, pp. 2368-2371, 2002.
[21] A. Nozik, "Quantum dot solar cells," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 115-120, 2002.
[22] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
[23] A. Hagfeldt and M. Gratzel, "Molecular photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
[24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, et al., "Conversion of light to electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO2 electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
[25] M. K. Nazeeruddin, P. Pechy, and M. Gratzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex," Chemical Communications, pp. 1705-1706, 1997.
[26] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, et al., "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
[27] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
[28] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, vol. 2, pp. 402-407, 2003.
[29] Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Gratzel, "Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: A combined impedance spectroscopy and near-IR transmittance study," The Journal of Physical Chemistry C, vol. 115, pp. 18847-18855, 2011.
[30] Q. J. Yu, Y. H. Wang, Z. H. Yi, N. N. Zu, J. Zhang, M. Zhang, et al., "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS Nano, vol. 4, pp. 6032-6038, 2010.
[31] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, "Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins," Angewandte Chemie, vol. 122, pp. 6796-6799, 2010.
[32] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, Nov 4 2011.
[33] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature Chemistry, vol. 6, pp. 242-247, 2014.
[34] S. Ferrere, A. Zaban, and B. A. Gregg, "Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives," The Journal of Physical Chemistry B, vol. 101, pp. 4490-4493, 1997.
[35] N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, "Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode," The Journal of Physical Chemistry B, vol. 101, pp. 9342-9351, 1997.
[36] "Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells," Chemistry Letters, vol. 29, pp. 316-317, 2000.
[37] A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, "Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization," The Journal of Physical Chemistry B, vol. 103, pp. 4693-4700, 1999.
[38] K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, et al., "Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain," Chemical Communications, pp. 1173-1174, 2000.
[39] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, "A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%," Chemical Communications, pp. 569-570, 2001.
[40] T. Horiuchi, H. Miura, and S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells," Chemical Communications, pp. 3036-3037, 2003.
[41] T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, "High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes," Journal of the American Chemical Society, vol. 126, pp. 12218-12219, 2004.
[42] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chemical Communications, pp. 5194-5196, 2008.
[43] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer," Chemical Communications, pp. 2198-2200, 2009.
[44] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, et al., "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials, vol. 22, pp. 1915-1925, 2010.
[45] W. Xiang, W. Huang, U. Bach, and L. Spiccia, "Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte," Chemical Communications, vol. 49, pp. 8997-8999, 2013.
[46] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, pp. 15894-15897, 2015.
[47] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
[48] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple," The Journal of Physical Chemistry B, vol. 109, pp. 3480-3487, 2005.
[49] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, pp. 3111-3115, 2012.
[50] K. Omata, S. Kuwahara, K. Katayama, S. Qing, T. Toyoda, K. M. Lee, et al., "The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox," Physical Chemistry Chemical Physics: PCCP, vol. 17, pp. 10170-5, 2015.
[51] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, pp. 1662-1665, 2010.
[52] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, pp. 6267, 2012.
[53] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Solar Energy Materials and Solar Cells, vol. 63, pp. 267-273, 2000.
[54] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, et al., "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," Journal of The Electrochemical Society, vol. 153, pp. A2255, 2006.
[55] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, pp. 4067, 2010.
[56] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, pp. 165-172, 2010.
[57] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., vol. 46, pp. 5367-5369, 2010.
[58] I. Mathews, P. J. King, F. Stafford, and R. Frizzell, "Performance of III-V Solar Cells as Indoor Light Energy Harvesters," IEEE Journal of Photovoltaics, vol. 6, pp. 230-235, 2016.
[59] P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, "Thin film solar cells for indoor use," in IEEE 37th Photovoltaic Specialists Conference (PVSC), 2011, pp. 000696-000698.
[60] F. De Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, vol. 156, pp. 413-422, 2015.
[61] N. Sridhar and D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," in 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 232-236.
[62] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, et al., "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nat Photon, vol. 11, pp. 372-378, 2017.
[63] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells," Nano Letters, vol. 2, pp. 1259-1261, 2002.
[64] M.-S. Kang, K.-S. Ahn, and J.-W. Lee, "Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes," Journal of Power Sources, vol. 180, pp. 896-901, 2008.
[65] X. Zhang, H. Yang, H.-M. Xiong, F.-Y. Li, and Y.-Y. Xia, "A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte," Journal of power sources, vol. 160, pp. 1451-1455, 2006.
[66] A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, pp. 3457-3466, 2001.
[67] N. Heo, Y. Jun, and J. H. Park, "Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells," Scientific Reports, vol. 3, 2013.
校內:2022-07-31公開