簡易檢索 / 詳目顯示

研究生: 黎巧薇
Li, Chiao-Wei
論文名稱: 鈷電解質染料敏化太陽能電池於室內光照條件之優化與應用
Optimization and Application of Cobalt-based Dye-Sensitized Solar Cells under Indoor Lighting Condition
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 染料敏化太陽能電池鈷氧化還原對室內光發電
外文關鍵詞: Dye-Sensitized Solar Cells,DSSC, Cobalt redox, Indoor lighting
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在增進染料敏化太陽能電池於室內光照條件下之光電轉換效率。選用具有較正氧化還原電位、低競爭吸光之鈷氧化還原對做為電解質系統,結合高消光係數之MK-2染料作為光敏化劑,並藉由工作電極的前、後處理,以及膠態電解質中奈米粒子的添加來改善元件轉換效率。首先利用乙氰(AN)溶劑製備而成的液態電解質來探討工作電極前、後處理對元件效能之影響。研究結果顯示,在網印二氧化鈦薄膜前先以噴霧熱解法對FTO導電玻璃進行前處理,形成一層緻密的TiO2阻擋層,可以有效抑制鈷氧化還原對和導電玻璃上之電子發生再結合反應,提升元件短路電流、開路電壓與填充因子,元件輸出功率在200-lux光強之T5燈管照射下可提升至9.44 µW/cm2。若將網印後的二氧化鈦薄膜再利用四氯化鈦溶液(TiCl4,aq)浸泡後處理後,可以進一步改善電子於二氧化鈦薄膜的傳輸,提升元件之電子收集率及短路電流大幅上升,因此元件輸出功率可再提升至11.56 µW/cm2。本研究亦比較不同電解質溶劑對元件效能之影響,結果顯示選用穩定性較高且不會發生染料脫附之3-甲氧基丙腈 (3-Methoxypropionitrile, MPN)溶劑所製備而成的元件,元件輸出功率又進一步提升至12.44 µW/cm2。接著添加膠化劑—聚偏二氟乙烯-三氯乙烯(Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)以及4wt% ZnO奈米粒子於MPN鈷液態電解質中製備出膠態電解質,能夠使元件開路電壓大幅提升,輸出功率高達13.12 µW/cm2。將上述液態、膠態,與添加4wt% ZnO奈米粒子之膠態三種元件置於室溫以及室內光200-lux下持續照光1000小時後,三者元件皆可維持將近100%之初始效率。

    The purpose of this study is to improve the conversion efficiency of dye-sensitized solar cells (DSSCs) under indoor lighting condition. DSSCs based on the cobalt redox couples and commercial MK-2 dye are fabricated, and several strategies are adopted to improve the photovoltaic performance. The results show that the compact layer deposited onto FTO substrates plays a crucial role in inhibiting the charge recombination between the FTO and cobalt redox couples. When acetonitrile (AN) is used as the solvent of the liquid electrolyte, the DSSC containing a thick blocking layer prepared by spray pyrolysis shows an output power of 9.44 µW/cm2 under 200-lux illumination of T5 light. Furthermore, the electron transport in the TiO2 matrices can be enhanced by using the TiO2 films with TiCl4 post-treatment, leading to a higher output power of 11.56 µW/cm2. The effect of different electrolyte solvent is also compared. The results show that the output power can achieve 12.44 µW/cm2 when the 3-methoxypropionitrile (MPN) solvent is utilized. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were utilized as the gelator and nano-fillers, respectively, to prepare the gel electrolyte. The results show that the presence of ZnO nanoparticles can significantly increase the output power to a value of 13.12 µW/cm2, which is ascribed to ZnO effects on the change of TiO2 conduction band level, as well as the inhibition of charge recombination at the TiO2/electrolyte interface. Finally, the stability tests show that the output power of liquid and gel-state cells can maintain 100% of their initial values after 1000 hours of 200-lux illumination.

    摘要 I Exdended Abstract II 誌謝 X 總目綠 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 第二章 理論與文獻回顧 3 2.1 染料敏化太陽能電池介紹 3 2.1.1 染料敏化太陽能電池之工作原理 4 2.1.2 染料敏化太陽能電池之電子傳輸路徑 5 2.2 染料敏化太陽能電池之結構 7 2.2.1 透明導電基板 7 2.2.2 氧化物半導體 9 2.2.3 光敏化劑 10 2.2.3.1 半導體敏化劑 10 2.2.3.2 釕金屬錯合物染料 12 2.2.3.3 紫質染料 15 2.2.3.4 純有機染料 16 2.2.4 電解質 19 2.2.4.1 碘電解質 20 2.2.4.2 鈷電解質 21 2.2.5 對電極 24 2.3 文獻回顧 26 2.3.1 染料敏化太陽能電池於室內光下之研究 26 2.3.2 鈷氧化還原對於室內光應用之可行性 29 2.3.3 奈米粒子添加劑 29 第三章 實驗部分 31 3.1 實驗藥品與材料 31 3.2 實驗儀器與分析原理 33 3.2.1 室內光量測系統 33 3.2.2 入射光子轉換效率測量系統(IPCE) 35 3.2.3 電化學交流阻抗分析儀 37 3.2.4 金屬濺鍍機 43 3.2.5 紫外光-可見光光譜儀(UV-visible) 43 3.2.6 一般儀器介紹 44 3.3 實驗流程 46 3.3.1 二氧化鈦薄膜製備 46 3.3.2 光電極敏化 47 3.3.3 白金對電極製備 48 3.3.4 電解質製備 48 3.3.5 染料敏化太陽能電池組裝 49 3.3.6 染料敏化次模組組裝 50 第四章 實驗結果與討論 52 4.1 室內光下光電極之調控 52 4.1.1 TiO2阻擋層(Blocking layer)對元件效能之影響 52 4.1.1.1 TiO2阻擋層提升光電轉換參數之原因 55 4.1.2 TiCl4後處理(Post-treatment)對元件效能之影響 61 4.1.2.1 後處理提升元件短路電流之原因 62 4.1.3 不同染料(Dye)於室內光下之比較 64 4.1.4 二氧化鈦多孔薄膜厚度之優化 66 4.2 室內光下電解質之調控 68 4.2.1 溶劑之選擇 68 4.2.2 鈷氧化還原對(Co2+/3+)濃度之最適化 71 4.2.3 ZnO奈米粒子應用於MPN鈷膠態電解質 75 4.2.3.1 ZnO奈米粒子使Voc提升之原因 77 4.2.3.2 ZnO奈米粒子使Jsc下降之原因 82 4.3 鈷電解質染料敏化電池之應用 86 4.3.1 元件穩定性測試 86 4.3.2 室內光次模組 87 第五章 結論與建議 88 5.1 結論 88 5.2 未來工作與建議 91 第六章 參考文獻 92

    [1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
    [2] B. O’Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film," Nature, vol. 353, pp. 737-740, 1991.
    [3] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, pp. 6595-6663, 2010.
    [5] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
    [6] B. Wang and L. L. Kerr, "Dye sensitized solar cells on paper substrates," Solar Energy Materials and Solar Cells, vol. 95, pp. 2531-2535, 2011.
    [7] H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, pp. 30-36, 2010.
    [8] Y. Y. Kuo and C. H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 337-343, 2013.
    [9] S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, pp. 4004-4006, 2006.
    [10] C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, vol. 21, pp. 5114-5119, 2011.
    [11] G. R. R. A. K. K. Tennakone, I. R. M. Kottegoda and V. P. S. Perera, "An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc," Chemical Communications, pp. 15-16, 1999.
    [12] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
    [13] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, et al., "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes," The Journal of Physical Chemistry B, vol. 101, pp. 2598-2601, 1997.
    [14] X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications," Nano Letters, vol. 8, pp. 3781-3786, 2008.
    [15] O. K. Varghese, M. Paulose, and C. A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells," Nature Nanotechnology, vol. 4, pp. 592-597, 2009.
    [16] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," The Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, 2006.
    [17] L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, et al., "Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells," Advanced Materials, vol. 17, pp. 813-815, 2005.
    [18] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, et al., "Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells," Progress in photovoltaics: research and applications, vol. 15, pp. 603-612, 2007.
    [19] T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, vol. 151, pp. A1767-A1773, 2004.
    [20] W. W. Yu and X. G. Peng, "Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers," Angewandte Chemie-International Edition, vol. 41, pp. 2368-2371, 2002.
    [21] A. Nozik, "Quantum dot solar cells," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 115-120, 2002.
    [22] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
    [23] A. Hagfeldt and M. Gratzel, "Molecular photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
    [24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, et al., "Conversion of light to electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO2 electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
    [25] M. K. Nazeeruddin, P. Pechy, and M. Gratzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex," Chemical Communications, pp. 1705-1706, 1997.
    [26] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, et al., "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
    [27] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
    [28] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, vol. 2, pp. 402-407, 2003.
    [29] Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Gratzel, "Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: A combined impedance spectroscopy and near-IR transmittance study," The Journal of Physical Chemistry C, vol. 115, pp. 18847-18855, 2011.
    [30] Q. J. Yu, Y. H. Wang, Z. H. Yi, N. N. Zu, J. Zhang, M. Zhang, et al., "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS Nano, vol. 4, pp. 6032-6038, 2010.
    [31] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, "Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins," Angewandte Chemie, vol. 122, pp. 6796-6799, 2010.
    [32] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, Nov 4 2011.
    [33] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature Chemistry, vol. 6, pp. 242-247, 2014.
    [34] S. Ferrere, A. Zaban, and B. A. Gregg, "Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives," The Journal of Physical Chemistry B, vol. 101, pp. 4490-4493, 1997.
    [35] N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, "Ultrafast Electron Injection:  Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode," The Journal of Physical Chemistry B, vol. 101, pp. 9342-9351, 1997.
    [36] "Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells," Chemistry Letters, vol. 29, pp. 316-317, 2000.
    [37] A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, "Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization," The Journal of Physical Chemistry B, vol. 103, pp. 4693-4700, 1999.
    [38] K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, et al., "Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain," Chemical Communications, pp. 1173-1174, 2000.
    [39] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, "A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%," Chemical Communications, pp. 569-570, 2001.
    [40] T. Horiuchi, H. Miura, and S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells," Chemical Communications, pp. 3036-3037, 2003.
    [41] T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, "High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes," Journal of the American Chemical Society, vol. 126, pp. 12218-12219, 2004.
    [42] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chemical Communications, pp. 5194-5196, 2008.
    [43] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer," Chemical Communications, pp. 2198-2200, 2009.
    [44] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, et al., "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials, vol. 22, pp. 1915-1925, 2010.
    [45] W. Xiang, W. Huang, U. Bach, and L. Spiccia, "Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte," Chemical Communications, vol. 49, pp. 8997-8999, 2013.
    [46] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, pp. 15894-15897, 2015.
    [47] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
    [48] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple," The Journal of Physical Chemistry B, vol. 109, pp. 3480-3487, 2005.
    [49] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, pp. 3111-3115, 2012.
    [50] K. Omata, S. Kuwahara, K. Katayama, S. Qing, T. Toyoda, K. M. Lee, et al., "The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox," Physical Chemistry Chemical Physics: PCCP, vol. 17, pp. 10170-5, 2015.
    [51] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, pp. 1662-1665, 2010.
    [52] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, pp. 6267, 2012.
    [53] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Solar Energy Materials and Solar Cells, vol. 63, pp. 267-273, 2000.
    [54] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, et al., "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," Journal of The Electrochemical Society, vol. 153, pp. A2255, 2006.
    [55] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, pp. 4067, 2010.
    [56] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, pp. 165-172, 2010.
    [57] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., vol. 46, pp. 5367-5369, 2010.
    [58] I. Mathews, P. J. King, F. Stafford, and R. Frizzell, "Performance of III-V Solar Cells as Indoor Light Energy Harvesters," IEEE Journal of Photovoltaics, vol. 6, pp. 230-235, 2016.
    [59] P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, "Thin film solar cells for indoor use," in IEEE 37th Photovoltaic Specialists Conference (PVSC), 2011, pp. 000696-000698.
    [60] F. De Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, vol. 156, pp. 413-422, 2015.
    [61] N. Sridhar and D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," in 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 232-236.
    [62] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, et al., "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nat Photon, vol. 11, pp. 372-378, 2017.
    [63] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells," Nano Letters, vol. 2, pp. 1259-1261, 2002.
    [64] M.-S. Kang, K.-S. Ahn, and J.-W. Lee, "Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes," Journal of Power Sources, vol. 180, pp. 896-901, 2008.
    [65] X. Zhang, H. Yang, H.-M. Xiong, F.-Y. Li, and Y.-Y. Xia, "A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte," Journal of power sources, vol. 160, pp. 1451-1455, 2006.
    [66] A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, pp. 3457-3466, 2001.
    [67] N. Heo, Y. Jun, and J. H. Park, "Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells," Scientific Reports, vol. 3, 2013.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE