| 研究生: |
林冠斈 Lin, Kuan-Hsueh |
|---|---|
| 論文名稱: |
臨界應變誘發電遷移-重新檢視Blech效應 The Blech Effect Revisited: Critical Lattice Strain-induced Electromigration |
| 指導教授: |
林士剛
Lin, Shih-kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 臨場通電實驗 、結晶繞射分析 、晶格應變 、鋁 、電遷移 |
| 外文關鍵詞: | In-situ current stressing experiment, XRD analysis, lattice strain, aluminum, electromigration |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大數據世代的演進,自駕車、智慧城市、自動化科技已成未來資訊世代的代表產品。為此,更快速的傳輸科技與更耐用的電子產品成為一大需求,近來的5G技術之起步正是其中一大標的。5G技術包含三大重點特色:提升的傳輸頻寬、機器間的資訊交換與更低的傳遞延遲。資訊傳輸的基本來自於電子訊號在元件內與元件間傳遞。低延遲的快速傳輸意味著電子訊號不會在這些過程中受干擾、損失或延遲。元件內與元件間的訊號傳輸主要由許許多多的金屬導線來完成,這些導線主要是鋁、銅與其他些許高導電性的金銀等材料。電子訊號的干擾通常來自這些金屬導線發生微結構的改變進而影響訊號的傳輸行為。在通電的過程當中,電遷移現象是其中一個主要原因。電遷移現象描述導線在承受高密度的電流時,金屬導線上會在陰極端出現孔洞,陽極端出現凸塊進而影響導線的訊號傳輸。在1976年,Blech在鋁金屬導線上發現電遷移現象要發生須滿足一臨界電流密度與長度乘積之值,成為往後在金屬導線設計上的重要法則。然而,此法則在材料機制的解釋上並不完備。本研究利用臨場通電觀測搭配材料為結構的分析方法,設計不同長度的鋁金屬導線施作大量通電測試。藉由繞射的分析,發現電遷移微結構的變化,與材料的應變行為有極大關聯,當材料通電時的臨場應變達到一個臨界值時,電遷移會在此情形下發生,並且使材料發生永久性的結構改變。進一步的第一原理計算發現此應變會大大降低材料的遷移屏障,提升材料遷移的可能性。在穿透式電子顯微鏡的進一步觀測下,雖在缺陷的差排密度分析上看不出顯著的差異,但在高密度電流通電的實驗組中,發現在鋁系統中極難形成的雙晶結構。加上繞射分析的永久性結構變化,說明了高密度電流的施加,電遷移的過程會使材料發生微觀尺度下的差排累積,進而促成巨觀尺度下發現的孔洞與凸塊,使微結構改變。
Since the technology development goes into the 5th generation. Requirement of low latency and highly functionalized devices increases. Moore’s law and More than Moore’s become important discipline in the IC industry. In the IC industry, the System in Package (SiP) concept results in the development of 2.5D and 3D IC. Upon the road to ultimate goal of the design, the reliability and efficiency is subjected to the current-induced issues such as Joule heating and electromigration (EM). In this thesis, the EM-resist design is reviewed, and the Blech effect is emphasized, followed by the investigation of the length-dependent EM occurrence in aluminum by current stressing experiments. In the experiment, the synchrotron X-ray was used as analyzing tool for the strain evolution during the in-situ current stressing process. From the strain to time profile, the steady state strain during the process and the residual strain after current ceased is defined for further quantitative study. By plotting the derived steady state strain and residual against the hillocks formation on the aluminum thin film, a critical steady-state strain around 0.008±0.0003 was found to trigger the EM hillocks formation, for the strip length ranging from 500 to 20000 μm. Further first principle calculation of the migration barrier under different strain state has been done to explain the critical strain. To conclude the whole thesis, the Blech effect is revisited that it is the critical strain instead of the current density-length product that results in EM. In the future work, the detailed study on the defect structure that causes the residual strain is suggested. On the other hand the relation between the critical strain 0.008±0.0003 and physical property of aluminum need to be investigated for the further application in to other industrial material systems and structures.
1. Iyer, S.S., Three-dimensional integration: An industry perspective. MRS Bulletin, 2015. 40(3): p. 225.
2. Arden, W., et al., More-than-Moore white paper. Version, 2010. 2: p. 14.
3. Gu, S., Material innovation opportunities for 3D integrated circuits from a wireless application point of view. MRS Bulletin, 2015. 40(3): p. 233.
4. Koyanagi, M., et al., Applications of three-dimensional LSI. MRS Bulletin, 2015. 40(3): p. 242.
5. Liu, C.-H., et al. Integrated process characterization and fabrication challenges for 2.5 D IC packaging utilizing silicon interposer with Backside Via Reveal process. in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). 2014. IEEE.
6. Bajwa, R.S.c.R.M.c.M.A.A.A., et al., Interconnects for 2D and 3D Architectures Heterogeneous Integration Roadmap 2019 Edition, 2019.
7. Chen, C., D. Yu, and K.-N. Chen, Vertical interconnects of microbumps in 3D integration. MRS bulletin, 2015. 40(3): p. 257.
8. Jiang, T., et al., Through-silicon via stress characteristics and reliability impact on 3D integrated circuits. MRS Bulletin, 2015. 40(3): p. 248.
9. Tu, K.-N., Y. Liu, and M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology. Applied Physics Reviews, 2017. 4(1): p. 011101.
10. Huntington, H. and A. Grone, Current-induced marker motion in gold wires. Journal of Physics and Chemistry of Solids, 1961. 20(1-2): p. 76-87.
11. Ho, P.S. and T. Kwok, Electromigration in metals. Reports on Progress in Physics, 1989. 52(3): p. 301.
12. Sorbello, R.S., Theory of electromigration. Solid state physics (New York. 1955), 1997. 51: p. 159-231.
13. d'Heurle, F. and R. Rosenberg, Electromigration in thin films, in Physics of thin films. 1973, Elsevier. p. 257-310.
14. Ryu, C., et al., Microstructure and reliability of copper interconnects. IEEE transactions on electron devices, 1999. 46(6): p. 1113-1120.
15. Black, J.R., Electromigration failure modes in aluminum metallization for semiconductor devices. Proceedings of the IEEE, 1969. 57(9): p. 1587-1594.
16. Black, J.R., Electromigration—A brief survey and some recent results. IEEE Transactions on Electron Devices, 1969. 16(4): p. 338-347.
17. Black, J.R. Physics of electromigration. in 12th International Reliability Physics Symposium. 1974. IEEE.
18. Rosenberg, R. and M. Ohring, Void formation and growth during electromigration in thin films. Journal of Applied Physics, 1971. 42(13): p. 5671-5679.
19. Marieb, T., et al., Observations of electromigration induced void nucleation and growth in polycrystalline and near‐bamboo passivated Al lines. Journal of applied physics, 1995. 78(2): p. 1026-1032.
20. Kim, C. and J. Morris Jr, The mechanism of electromigration failure of narrow Al‐2Cu‐1Si thin‐film interconnects. Journal of applied physics, 1993. 73(10): p. 4885-4893.
21. Kawanoue, T., et al., Electromigration‐induced void growth in bamboo structures. Journal of applied physics, 1993. 74(7): p. 4423-4429.
22. Hu, C.-K., Electromigration failure mechanisms in bamboo-grained Al (Cu) interconnections. Thin solid films, 1995. 260(1): p. 124-134.
23. Tu, K.-N. Electromigration in VLSI of thin film interconnects. in Fifth International Conference on Thin Film Physics and Applications. 2004. International Society for Optics and Photonics.
24. Spolenak, R., O. Kraft, and E. Arzt, Effects of alloying elements on electromigration. Microelectronics Reliability, 1998. 38(6-8): p. 1015-1020.
25. Ames, I., F. d'Heurle, and R. Horstmann, Reduction of electromigration in aluminum films by copper doping. IBM Journal of Research and Development, 1970. 14(4): p. 461-463.
26. Ogawa, E.T., et al., Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Transactions on reliability, 2002. 51(4): p. 403-419.
27. Hu, C., et al., Mechanisms for very long electromigration lifetime in dual-damascene Cu interconnections. Applied Physics Letters, 2001. 78(7): p. 904-906.
28. Abbasinasab, A. and M. Marek-Sadowska. Blech effect in interconnects: Applications and design guidelines. in Proceedings of the 2015 Symposium on International Symposium on Physical Design. 2015.
29. Blech, I.A., Electromigration in thin aluminum films on titanium nitride. Journal of applied physics, 1976. 47(4): p. 1203-1208.
30. Liu, Y.-c. and S.-k. Lin, A Critical Review on the Electromigration Effect, the Electroplastic Effect, and Perspectives on the Effects of Electric Current Upon Alloy Phase Stability. JOM, 2019. 71(9): p. 3094-3106.
31. Blech, I. and C. Herring, Stress generation by electromigration. Applied Physics Letters, 1976. 29(3): p. 131-133.
32. Ross, C., et al., The effect of anodization on the electromigration drift velocity in aluminum films. Journal of applied physics, 1989. 66(6): p. 2349-2355.
33. Blech, I., Diffusional back flows during electromigration. Acta Materialia, 1998. 46(11): p. 3717-3723.
34. Alam, S.M., et al. Impact of non-blocking vias on electromigration and circuit-level reliability assessments of Cu interconnects. in Proceedings of the Advanced Metallization Conference. 2004.
35. Tu, K.-N., Recent advances on electromigration in very-large-scale-integration of interconnects. Journal of applied physics, 2003. 94(9): p. 5451-5473.
36. Budiman, A., et al., Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Applied Physics Letters, 2006. 88(23): p. 233515.
37. Lin, S.-k., et al., The electromigration effect revisited: non-uniform local tensile stress-driven diffusion. Scientific reports, 2017. 7(1): p. 1-10.
38. Liu, Y.-c., S.-k. Lin, and S.-J. Chiu, On the Schmid's Law for the electric current-induced deformation: An in situ EBSD study. International Journal of Mechanical Sciences, 2020. 168: p. 105295.
39. Hafner, J., Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond. Journal of computational chemistry, 2008. 29(13): p. 2044-2078.
40. Liang, C.-L., S.-W. Lee, and K.-L. Lin, The mechanism of an increase in electrical resistance in Al thin film induced by current stressing. Thin Solid Films, 2017. 636: p. 164-170.
41. Chen, M., et al., Deformation twinning in nanocrystalline aluminum. Science, 2003. 300(5623): p. 1275-1277.