簡易檢索 / 詳目顯示

研究生: 蔡昆澔
Tsai, Kun-Hao
論文名稱: PGRMC1在肝癌中對缺氧壓力以及抗藥性的重要性
The significance of PGRMC1 on hypoxic stress and drug resistance in hepatocellular carcinoma
指導教授: 周楠華
Chow, Nan-Haw
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 88
中文關鍵詞: 肝細胞癌黃體酮受體膜組件一經導管藥物栓塞治療法缺氧誘導因子-1α表皮生長因子受體
外文關鍵詞: Hepatocellular carcinoma, Progesterone receptor membrane component 1, Trans-arterial chemoembolization, Hypoxia-inducible factor 1α, Epidermal growth factor receptor
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌(Hepatocellular carcinoma, HCC) 是國內常見十大癌症之一,經導管藥物栓塞治療法(Trans-arterial chemoembolization, TACE)被廣泛的應用在不適合進行經皮射頻燒灼、手術切除或是移植的肝癌病患中。然而,預測經導管藥物栓塞治療法預後的生物標記仍需待釐清。黃體酮受體膜組件一 (PGRMC1) 是黃體酮受體家族(membrane associated progesterone receptor, MAPR) 相關成員之一,而PGRMC1 過去被歸類於非典型的黃體酮受體。PGRMC1 可以透過與血紅素(Heme)形成雙體(dimer),而血紅素誘導的PGRMC1 雙體可以與細胞色素P450 (cytochrome P450)以及表皮生長因子受體(EGFR) 產生交互作用。PGRMC1 在乳癌病患中的過度表達會降低病患的無病存活率(disease-free survival),而且也會增加可增強體外細胞增殖 (cell proliferation)以及增加化療藥物的抗藥性。過去研究中指出PGRMC1 會在缺氧壞死的乳癌細胞周圍的存活組織中大量表達,我們推測PGRMC1在缺氧癌細胞組織中扮演著重要角色。我們的研究,發現肝癌細胞株中的PGRMC1表達降低,可以減緩缺氧環境下的體外細胞生長 (cell growth)。腫瘤球形成實驗發現,肝癌細胞的PGRMC1表現量,和癌症幹細胞的功能呈正向關係。PGRMC1 可以刺激EGFR磷酸化,來增加下游基因的表達,進而提升肝癌細胞株在缺氧環境的存活率。此外,PGRMC1可以透過活化EGFR,來增加缺氧誘導因子-1α(HIF-1α)的表達。相反,肝癌細胞株預先給予EGFR抑制劑得舒緩(Erlotinib)後,可以有效逆轉PGRMC1在缺氧環境下誘導的HIF-1α蛋白表達。綜合以上結果,本研究釐清肝癌細胞中缺氧環境下,PGRMC1 調控EGFR的分子機轉,也許可以應用來改善TACE對於肝癌之療效。

    Hepatocellular carcinoma (HCC) is one of the top ten important cancers in Taiwan. Currently, trans-arterial chemoembolization (TACE) is widely applied in the treatment of HCC patients who are not candidates for percutaneous ablation, liver resection, or transplantation. However, biomarkers in predicting the clinical outcome after TACE remain controversial. Progesterone receptor membrane component 1(PGRMC1), one of the membrane associated progesterone receptor (MAPR) family members, has been thought as putative progesterone receptor. PGRMC1 can form as a homodimer induced by heme, and heme–mediated PGRMC1 dimerization is required for cytochrome P450 and EGFR interaction with PGRMC1. Overexpression of PGRMC1 is associated with poor disease-free survival of breast cancer patients and induces cell proliferation and chemotherapeutic resistance in vitro. Since PGRMC1 expression was localized at hypoxic zone surrounding necrotic breast cancer tissue, we hypothesized that PGRMC1 may play a role in the response of cancer cells to hypoxia. Knocking down of PGRMC1 suppressed the proliferation of HCC cells in vitro under hypoxia. HCC cells having high expression of PGRMC1 had a higher efficiency of tumor sphere formation under hypoxia compared with those with lower PGRMC1 expression. PGRMC1 stimulated EGFR phosphorylation with activation of downstream pathway, resulting in enhanced survival of HCC in vitro under hypoxia. In contrast, pretreatment with EGFR inhibitor-Erlotinib successfully reversed the PGRMC1 induced HIF-1α expression under hypoxia. PGRMC1 up-regulated the HIF-1α expression through EGFR activation. Together, PGRMC1 could enhance the survival of HCC in vitro under hypoxia through EGFR activation and HIF-1α accumulation. Clarification of mechanisms underlying interaction of PGRMC1 with EGFR in the response of HCC to hypoxic stress may improve the efficacy of TACE treatment to HCC.

    Chinese Abstract II Abstract III Acknowledgment V Table of Contents VI ABBREVIATIONS XI Chapter1. Introduction 1 1. Hepatocellular carcinoma 1 2. Trans-arterial chemoembolization in HCC 2 3. Hypoxia inducible factor-1 3 4. Progesterone receptor membrane component 1(PGRMC1) 4 5. Epidermal Growth Factor Receptor (EGFR) 5 6. Drug resistance in HCC under hypoxia 6 Chapter 2. Materials and Methods 7 1. Cell culture, cell lines and hypoxia chamber 7 2. Knockdown and overexpression of PGRMC1 7 3. Western blotting 8 4. Cell proliferation assay 9 5. Immunoprecipitation 9 6. Reverse transcription-polymerase chain reaction (RT-PCR) 9 7. Wound-healing assay 10 8. Transwell migration assay 10 9. Tumor-sphere formation assay 11 10. Statistical analysis 11 Chapter3. Results 12 Part I. The biological effect of PGRMC1 on HCC under hypoxia 12 1. Establishment of PGRMC1 stably knockdown and overexpressed cell lines 12 2. PGRMC1 promotes cell proliferation under hypoxia in vitro. 12 3. Effect of HIF-1α expression under Cobalt chloride (CoCl2) hypoxia mimic treatment in vitro. 13 Part II. The biological effect of PGRMC1 on HCC under hypoxia 13 4. Expression and phosphorylation level of EGFR modulated by PGRMC1 in vitro. 13 5. PGRMC1 in the modulation of EGFR activation by EGF in vitro. 13 6. Effects of PGRMC1 on EGFR mRNA expression in HCC in vitro 2 7. Interaction of PGRMC1 with EGFR in HepG2, Hep3B and PLC/PRF/5 cells in vitro. 2 8. The effects of PGRMC1 on Caveolin-1 expression under hypoxia in vitro. 3 9. Interaction of Caveolin-1 with EGFR in Hep3B and PLC/PRF/5 cells in vitro. 3 10. The impact of PGRMC1 on chemosensitivity of HCC cells to Erlotinib in vitro 3 11. Modulation of HIF-1α expression by EGFR in vitro 4 Part III. The potential signaling pathway modulate by PGRMC1 in HCC cell lines under hypoxia 4 12. EGFR signaling pathway modulated by PGRMC1 in HCC under hypoxia 4 13. JAK/STAT signaling pathway modulated by PGRMC1 in HCC under hypoxia 5 14. The effect of progesterone and heme treatment in HCC cell lines. 5 15. Overexpression of PGRMC1 in Hep-3B cells inhibit wound healing in vitro. 6 16. The impact of PGRMC1 on tumor-sphere formation in vitro 6 Chapter4. Discussion 7 Chapter5. Conclusion 12 Chapter 6. References 13 Chapter 7. Figure legends 26 Figure 1. PGRMC1 expression in stable clones established from Hep3B, HepG2 and PLC/PRF/5 cells. 26 Figure 2. The effects of PGRMC1 on cell proliferation under hypoxia of Hep3B, HepG2 and PLC/PRF/5 cells in vitro. 28 Figure 3. The effects of PGRMC1 on HIF-1α expression under Cocl2 hypoxia mimic treatment in vitro. 30 Figure 4. Phosphorylation level of EGFR is modulated by PGRMC1 in Hep3B, HepG2 and PLC/PRF/5 cells under hypoxia in vitro. 32 Figure 5. Activation of EGFR by EGF in Hep-G2 cells is regulated by PGRMC1 in vitro 33 Figure 6. Effects of PGRMC1 on EGFR mRNA expression in Hep-3B and Hep-G2 cells in vitro. 34 Figure 7. Interaction of PGRMC1 with EGFR in HepG2 PLC/PRF/5 and Hep3B cells in vitro. 36 Figure 8. The effects of PGRMC1 on Caveolin-1 expression under hypoxia in vitro. 38 Figure 9. Interaction of Caveolin-1 with EGFR in Hep3B and PLC/PRF/5 cells in vitro. 40 Figure 10. The effects of PGRMC1 targeting on chemosensitivity to Erlotinib in vitro under hypoxia. 42 Figure 11. PGRMC1 can affect HIF-1α protein expression by modulate EGFR activity. 46 Figure 12. EGFR signaling pathway activated by PGRMC1 under hypoxia in vitro. 48 Figure 13. Jak-Stat signaling pathway activated by PGRMC1 under hypoxia in vitro. 52 Figure 14. The effects of heme on cell proliferation under hypoxia of HepG2 cells in vitro. 54 Figure 15. The effects of PGRMC1 on migration of Hep-3B cells measured by wound healing assay under hypoxia. 56 Figure 16. The impact of PGRMC1 on tumor-sphere formation in vitro 59 Figure 17. Hypothetical model for PGRMC1 in the protection of hepatocellular carcinoma under hypoxia through activation of EGFR and Jak2. 60 Chapter 8. Appendix 61 Appendix 1. EGFR signaling pathway activated by PGRMC1 under Cocl2 hypoxia mimic treatment in vitro. 64 Appendix 2. Jak-Stat signaling pathway activated by PGRMC1 under Cocl2 hypoxia mimic treatment in vitro. 68 Appendix 3. The effects of PGRMC1 targeting on chemosensitivity to chemotherapy drugs in vitro under hypoxia. 70 Appendix 4. The effects of PGRMC1 targeting on chemosensitivity to HCC first-line and second-line TKI drugs in vitro under hypoxia. 72 Appendix 5. The effects of PGRMC1 on cell proliferation and drug resistance under hypoxia of Mahlavu cells in vitro. 74 Appendix 6. The effects of PGRMC1 on transwell cell migration assay under hypoxia in vitro. 75 Appendix Table 1. The primers utilized in current study 76

    1 Kuo CN, Liao YM, Kuo LN, Tsai HJ, Chang WC, Yen Y. Cancers in Taiwan: Practical insight from epidemiology, treatments, biomarkers, and cost. J Formos Med Assoc 2020; 119: 1731-1741.

    2 Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN et al. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2018; 24: 1152-1166.

    3 Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin Z et al. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis 2020; 11: 822.

    4 Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 2014; 20: 4115-4127.

    5 Line PD, Dueland S. Liver transplantation for secondary liver tumours: The difficult balance between survival and recurrence. J Hepatol 2020; 73: 1557-1562.

    6 Ercolani G, Grazi GL, Ravaioli M, Del Gaudio M, Gardini A, Cescon M et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg 2003; 237: 536-543.

    7 Gomaa A, Waked I. Management of advanced hepatocellular carcinoma: review of current and potential therapies. Hepatoma Research 2017; 3: 112-122.

    8 Jia C, Dai C, Zhao X, Bu X, Xu F, Peng S et al. Use of hepatic blood inflow occlusion and hemihepatic artery retention in liver resection for hepatocellular carcinoma. Translational Cancer Research 2016; 5: 598-606.

    9 Miyayama S. Treatment Strategy of Transarterial Chemoembolization for Hepatocellular Carcinoma. Applied Sciences 2020; 10: 7337.

    10 Shin SW. The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol 2009; 10: 425-434.

    11 Jiang H, Meng Q, Tan H, Pan S, Sun B, Xu R et al. Antiangiogenic therapy enhances the efficacy of transcatheter arterial embolization for hepatocellular carcinomas. Int J Cancer 2007; 121: 416-424.

    12 Jia ZZ, Jiang GM, Feng YL. Serum HIF-1alpha and VEGF levels pre- and post-TACE in patients with primary liver cancer. Chin Med Sci J 2011; 26: 158-162.

    13 Li X, Feng GS, Zheng CS, Zhuo CK, Liu X. Expression of plasma vascular endothelial growth factor in patients with hepatocellular carcinoma and effect of transcatheter arterial chemoembolization therapy on plasma vascular endothelial growth factor level. World J Gastroenterol 2004; 10: 2878-2882.

    14 Leelawat K, Laisupasin P, Kiatdilokrut A, Pongtongpool T, Narong S, Samkhumphim N et al. The effect of doxorubicin on the changes of serum vascular endothelial growth factor (VEGF) in patients with hepatocellular carcinoma after transcatheter arterial chemoembolization (TACE). J Med Assoc Thai 2008; 91: 1539-1543.

    15 Liu K, Min XL, Peng J, Yang K, Yang L, Zhang XM. The Changes of HIF-1α and VEGF Expression After TACE in Patients With Hepatocellular Carcinoma. J Clin Med Res 2016; 8: 297-302.

    16 Wei X, Zhao L, Ren R, Ji F, Xue S, Zhang J et al. MiR-125b Loss Activated HIF1α/pAKT Loop, Leading to Transarterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology 2021; 73: 1381-1398.

    17 Huang M, Wang L, Chen J, Bai M, Zhou C, Liu S et al. Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery. Int J Oncol 2016; 48: 2144-2154.

    18 Gai X, Zhou P, Xu M, Liu Z, Zheng X, Liu Q. Hyperactivation of IL-6/STAT3 pathway leaded to the poor prognosis of post-TACE HCCs by HIF-1α/SNAI1 axis-induced epithelial to mesenchymal transition. J Cancer 2020; 11: 570-582.

    19 Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 2016; 41: 211-218.

    20 Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011; 2: 1097-1105.

    21 Lv X, Li J, Zhang C, Hu T, Li S, He S et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism. Genes Dis 2017; 4: 19-24.

    22 Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ 2008; 15: 621-627.

    23 Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 2015; 5: 378-389.

    24 Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des 2009; 15: 3895-3903.

    25 Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138: 1058-1066.

    26 Lodde V, Peluso JJ. A novel role for progesterone and progesterone receptor membrane component 1 in regulating spindle microtubule stability during rat and human ovarian cell mitosis. Biol Reprod 2011; 84: 715-722.

    27 Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun 2016; 7: 11030.

    28 Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W et al. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res 2008; 10: R85.

    29 Ahmed IS, Rohe HJ, Twist KE, Craven RJ. Pgrmc1 (progesterone receptor membrane component 1) associates with epidermal growth factor receptor and regulates erlotinib sensitivity. J Biol Chem 2010; 285: 24775-24782.

    30 Lin Y, Higashisaka K, Shintani T, Maki A, Hanamuro S, Haga Y et al. Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci Rep 2020; 10: 4748.

    31 Pedroza DA, Rajamanickam V, Subramani R, Bencomo A, Galvez A, Lakshmanaswamy R. Progesterone receptor membrane component 1 promotes the growth of breast cancers by altering the phosphoproteome and augmenting EGFR/PI3K/AKT signalling. Br J Cancer 2020; 123: 1326-1335.

    32 Wang Z. ErbB Receptors and Cancer. Methods Mol Biol 2017; 1652: 3-35.

    33 Purba ER, Saita EI, Maruyama IN. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6.

    34 Landau M, Fleishman SJ, Ben-Tal N. A putative mechanism for downregulation of the catalytic activity of the EGF receptor via direct contact between its kinase and C-terminal domains. Structure 2004; 12: 2265-2275.

    35 Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16: 15-31.

    36 Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75: 50-83.

    37 Huang P, Xu X, Wang L, Zhu B, Wang X, Xia J. The role of EGF-EGFR signalling pathway in hepatocellular carcinoma inflammatory microenvironment. J Cell Mol Med 2014; 18: 218-230.

    38 Jin H, Shi Y, Lv Y, Yuan S, Ramirez CFA, Lieftink C et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature 2021; 595: 730-734.

    39 Hu W, Zheng S, Guo H, Dai B, Ni J, Shi Y et al. PLAGL2-EGFR-HIF-1/2α Signaling Loop Promotes HCC Progression and Erlotinib Insensitivity. Hepatology 2021; 73: 674-691.

    40 Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2015; 33: 559-566.

    41 Hsu CH, Kang YK, Yang TS, Shun CT, Shao YY, Su WC et al. Bevacizumab with erlotinib as first-line therapy in Asian patients with advanced hepatocellular carcinoma: a multicenter phase II study. Oncology 2013; 85: 44-52.

    42 Philip PA, Mahoney MR, Holen KD, Northfelt DW, Pitot HC, Picus J et al. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer 2012; 118: 2424-2430.

    43 Thomas MB, Morris JS, Chadha R, Iwasaki M, Kaur H, Lin E et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009; 27: 843-850.

    44 Komposch K, Sibilia M. EGFR Signaling in Liver Diseases. Int J Mol Sci 2015; 17.

    45 Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L et al. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11: 641522.

    46 Xu M, Zheng YL, Xie XY, Liang JY, Pan FS, Zheng SG et al. Sorafenib blocks the HIF-1α/VEGFA pathway, inhibits tumor invasion, and induces apoptosis in hepatoma cells. DNA Cell Biol 2014; 33: 275-281.

    47 Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G et al. Loss of PGRMC1 Delays the Progression of Hepatocellular Carcinoma via Suppression of Pro-Inflammatory Immune Responses. Cancers (Basel) 2021; 13.

    48 Wang Y, Roche O, Xu C, Moriyama EH, Heir P, Chung J et al. Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc Natl Acad Sci U S A 2012; 109: 4892-4897.

    49 Lee SH, Koo KH, Park JW, Kim HJ, Ye SK, Park JB et al. HIF-1 is induced via EGFR activation and mediates resistance to anoikis-like cell death under lipid rafts/caveolae-disrupting stress. Carcinogenesis 2009; 30: 1997-2004.

    50 Roy S, Rizvi ZA, Clarke AJ, Macdonald F, Pandey A, Zaiss DMW et al. EGFR-HIF1α signaling positively regulates the differentiation of IL-9 producing T helper cells. Nat Commun 2021; 12: 3182.

    51 Noman MZ, Buart S, Van Pelt J, Richon C, Hasmim M, Leleu N et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 2009; 182: 3510-3521.

    52 Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther 2009; 121: 14-19.

    53 Rocha-Lima CM, Raez LE. Erlotinib (tarceva) for the treatment of non-small-cell lung cancer and pancreatic cancer. P t 2009; 34: 554-564.

    54 Iwai T, Moriya Y, Shirane M, Fujimoto-Ouchi K, Mori K. Continuous inhibition of epidermal growth factor receptor phosphorylation by erlotinib enhances antitumor activity of chemotherapy in erlotinib-resistant tumor xenografts. Oncol Rep 2012; 27: 923-928.

    55 Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 2015; 62: 1160-1173.

    56 Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. Faseb j 2005; 19: 1296-1298.

    57 Liu Y, Calmel C, Desbois-Mouthon C, Sobczak-Thépot J, Karaiskou A, Praz F. Regulation of the EGFR/ErbB signalling by clathrin in response to various ligands in hepatocellular carcinoma cell lines. J Cell Mol Med 2020; 24: 8091-8102.

    58 Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res 2008; 6: 1099-1105.

    59 Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5: 8.

    60 Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21: 62.

    61 Oishi N, Yamashita T, Kaneko S. Molecular biology of liver cancer stem cells. Liver Cancer 2014; 3: 71-84.

    62 Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci 2011; 7: 517-535.

    63 Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8: 90-100.

    64 Kim JH, Park SY, Jun Y, Kim JY, Nam JS. Roles of Wnt Target Genes in the Journey of Cancer Stem Cells. Int J Mol Sci 2017; 18.

    65 Jin W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9.

    66 Almiron Bonnin DA, Havrda MC, Lee MC, Liu H, Zhang Z, Nguyen LN et al. Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene 2018; 37: 1107-1118.

    67 Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G et al. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci 2019; 237: 116952.

    68 Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019; 19: 618.

    69 Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 2015; 5: 1602-1609.

    70 Rinkenbaugh AL, Baldwin AS. The NF-κB Pathway and Cancer Stem Cells. Cells 2016; 5.

    71 Zakaria N, Mohd Yusoff N, Zakaria Z, Widera D, Yahaya BH. Inhibition of NF-κB Signaling Reduces the Stemness Characteristics of Lung Cancer Stem Cells. Front Oncol 2018; 8: 166.

    72 Seo EJ, Kim DK, Jang IH, Choi EJ, Shin SH, Lee SI et al. Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 2016; 7: 55624-55638.

    73 Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 2012; 19: 284-294.

    74 Park JH, Shin JE, Park HW. The Role of Hippo Pathway in Cancer Stem Cell Biology. Mol Cells 2018; 41: 83-92.

    75 Wu H, Liu Y, Liao Z, Mo J, Zhang Q, Zhang B et al. The role of YAP1 in liver cancer stem cells: proven and potential mechanisms. Biomark Res 2022; 10: 42.

    76 Li J, Li Z, Wu Y, Wang Y, Wang D, Zhang W et al. The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma. Cell Death Dis 2019; 10: 603.

    77 Matsuki M, Hoshi T, Yamamoto Y, Ikemori-Kawada M, Minoshima Y, Funahashi Y et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med 2018; 7: 2641-2653.

    78 Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5: 87.

    79 Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390.

    80 Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367: 1-11.

    81 Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 2017; 38: 614-622.

    82 Ezzoukhry Z, Louandre C, Trécherel E, Godin C, Chauffert B, Dupont S et al. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 2012; 131: 2961-2969.

    83 Shi T, Iwama H, Fujita K, Kobara H, Nishiyama N, Fujihara S et al. Evaluating the Effect of Lenvatinib on Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2021; 22.

    無法下載圖示 校內:2027-09-01公開
    校外:2027-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE