簡易檢索 / 詳目顯示

研究生: 蕭羽容
Xiao, Yu-Rong
論文名稱: 在二階異質網路具服務品質保證的資訊與能量波束成型
Information and Energy Beamforming for Two-Tier Heterogeneous Networks with QoS Guarantee
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 58
中文關鍵詞: 無線攜能通訊雙層級無線網路波束成型半正定鬆馳技術分時多工
外文關鍵詞: Simultaneous wireless information and power transfer, Heterogeneous network, Beamforming, Semidefinite relaxation, Time-division multiplexing
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線攜能通訊技術可以提供同時間的資訊與能量服務,傳統上被運用於單一層級的無線網路中,在本篇論文中,我們將無線攜能通訊技術運用於雙層級的無線網路。基於分時多工的概念,每個訊框被劃分成三個傳輸階段:通道估計階段、階段(I)和階段(II)。在階段(I),第一層級將執行訊號傳輸,並提供第二層級作能量獵集。在階段(II)中,兩層級傳輸訊號給各自的使用者。為了保證系統的傳輸品質,我們探討兩個最佳化的問題,其一是最小化傳輸能量,此問題將受限於訊號吞吐量與能量獵集的需求,其二為最大化吞吐量問題,其須滿足總傳輸能量限制及能量獵集需求。為提升傳輸的效率,我們提出最佳化的資訊與能量波束設計,由於對應的最佳化為非凸問題,我們將運用半正定鬆弛技術解決兩個最佳化問題。此外,為更進一步改善第二層級因同通道干擾所造成的微弱吞吐量,我們將在兩個最佳化問題中,運用額外限制條件來保證吞吐量可滿足最低需求。最後,我們將透過模擬結果呈現最佳化問題的表現,並探討各系統參數對雙層級無線攜能網路效能的影響。

    Simultaneous wireless information and power transfer (SWIPT) is an attractive technique to provide wireless data services and energy charging at the same time. Conventionally, it is applied to one-tier networks such as current cellular and WiFi networks where a central station is deployed to serve a number of users in the coverage. As the notion of heterogeneous network becomes emerging, it is of paramount importance to investigate effective SWIPT methods in the context of heterogeneous networks. In this thesis, we consider a two-tier heterogeneous network where the primary tier and the secondary tier are overlaid in the same geographical area. To enable SWIPT in such a heterogeneous network, we consider the time division multiple access (TDMA) and propose the frame structure. To guarantee the service quality in the system, we explore the optimal beamforming design based on two optimization formulations including the transmission power minimization subject to the requirement of data throughput and harvested energy, and the throughput maximization subject to the available transmission power and the harvested energy target. Since both the formulated problems are non-convex in nature, we obtain the optimal solution by applying the semidefinite relaxation (SDR) technique. We investigate the optimality of the SDR solutions and propose methods to improve the throughput of the secondary tier that may suffer severe co-channel interference from the primary tier. Numerical results are provided to evaluate the performance of the proposed optimal beamforming design and compare with some benchmark schemes.

    1 Introduction 1 1.1 Challenges and Problem Statement 1 1.2 Thesis Structure 2 2 Related Work 4 2.1 Simultaneous Wireless Information and Power Transfer (SWIPT) 4 2.2 Energy Beamforming (EB) 4 2.3 Semidefinite Relaxation (SDR) 5 2.4 Energy Receiver in One-Tier Network 5 2.4.1 Wireless Power Transfer (WPT) 5 2.4.2 SWIPT with Co-located Receiver 6 2.4.3 SWIPT with Separated Receiver 6 3 System Model and Frame Structure 8 3.1 System Model 8 3.2 Frame Structure 9 3.3 Channel Estimation and Transmitted signal 11 3.3.1 Channel Estimation Phase (CE) 11 3.3.2 Transmitted Signal 12 3.4 Transmission Phase 12 3.4.1 Phase (I) 13 3.4.2 Phase (II) 14 4 Problem Formulation 16 4.1 Optimal Beamforming Solution 16 4.1.1 Minimize the Transmission Power 16 4.1.2 Maximize the PUE Throughput 19 4.2 Throughput Improvement for SRX 20 4.2.1 Interference Management 20 4.2.2 Accumulation of the Harvested Energy 23 4.3 Benchmark 25 4.3.1 Maximum-Ratio Transmission (MRT) 25 4.3.2 Omnidirectional Broadcast 25 5 Simulation Result and Discussion 27 5.1 Simulation configuration 27 5.2 Channel Estimation 28 5.2.1 Time Duration for CE 28 5.2.2 Impact of Transmit Power Factor for Pilot 29 5.2.3 Impact of CE Symbol Interval TS 30 5.3 Transmission Duration 31 5.4 Optimization performance 35 5.4.1 Minimum Transmission Power at PBS 35 5.4.2 Maximum Throughput at PUE 35 5.5 Throughput Improvement for SRX 38 5.5.1 Interference Management 38 5.5.2 Accumulation of the Harvested Energy 42 6 Conclusion and Future work 45 6.1 Summary of Thesis 45 6.2 Future Work 46 Appendix 47 References 57

    [1] Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint transmit beamforming and receive power splitting for miso swipt systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp. 3269–3280, Jun. 2014.
    [2] T. A. Le, H. X. Nguyen, Q. T. Vien, and M. Karamanoglu “Secure information transmission in the presence of energy-harvesting eavesdroppers in multi-cell networks,” in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2015, pp. 1–6.
    [3] J. Xu, L. Liu, and R. Zhang, “Multiuser miso beamforming for simultaneous wireless information and power transfer,” IEEE Transactions on Signal Processing, vol. 62, no. 18, pp. 4798–4810, Sep. 2014.
    [4] Y. S. Wang, Y. W. P. Hong, and W. T. Chen, “Downlink multiuser beamforming and power control for base stations empowered by renewable energy,” in Proc. IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Sep. 2013, pp. 1056–1060.
    [5] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, “Throughput optimization for massive mimo systems powered by wireless energy transfer,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp. 1640–1650, Aug. 2015.
    [6] L. Liu, R. Zhang, and K. C. Chua, “Multi-antenna wireless powered communication with energy beamforming,” IEEE Transactions on Communications, vol. 62, no. 12, pp. 4349–4361, Dec. 2014.
    [7] Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, May 2010.
    [8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
    [9] G. Yang, C. K. Ho, and Y. L. Guan, “Dynamic resource allocation for multiple-antenna wireless power transfer,” IEEE Transactions on Signal Processing, vol. 62, no. 14, pp. 3565–3577, Jul. 2014.
    [10] H. Ju and R. Zhang, “A novel mode switching scheme utilizing random beamforming for opportunistic energy harvesting,” IEEE Transactions on Wireless Communications, vol. 13, no. 4, pp. 2150–2162, Apr. 2014.
    [11] R. Zhang and C. K. Ho, “Mimo broadcasting for simultaneous wireless information and power transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, May 2013.
    [12] S. K. Sengijpta, “Fundamentals of statistical signal processing: Estimation theory,” Technometrics, vol. 37, no. 4, pp. 465–466, 1995.
    [13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
    [14] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Transactions on Communications, vol. 47, no. 10, pp. 1458–1461, Oct. 1999.

    無法下載圖示 校內:2019-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE